Practical comparison of 2.7μm fused-core silica particles and porous sub-2μm particles for fast separations in pharmaceutical process development
Autor: | Mohammad A. Al-Sayah, Ahmed Abrahim, Yadan Chen, Yuri Bereznitski, Peter J. Skrdla, Naijun Wu |
---|---|
Rok vydání: | 2010 |
Předmět: |
Pressure drop
Chemistry Chemistry Pharmaceutical Clinical Biochemistry Analytical chemistry Pharmaceutical Science Hydrogen Bonding Silicon Dioxide Analytical Chemistry Mass transfer Phase (matter) Drug Discovery Technology Pharmaceutical Particle Particle size Particle Size Drug Contamination Selectivity Porosity Porous medium Hydrophobic and Hydrophilic Interactions Chromatography High Pressure Liquid Spectroscopy |
Zdroj: | Journal of Pharmaceutical and Biomedical Analysis. 51:131-137 |
ISSN: | 0731-7085 |
DOI: | 10.1016/j.jpba.2009.08.023 |
Popis: | Fused-core silica stationary phases represent a key technological advancement in the arena of fast HPLC separations. These phases are made by fusing a 0.5 microm porous silica layer onto 1.7 microm nonporous silica cores. The reduced intra-particle flow path of the fused particles provides superior mass transfer kinetics and better performance at high mobile phase velocities, while the fused-core particles provide lower pressure than sub-2 microm particles. In this work, chromatographic performance of the fused-core particles (Ascentis Express) was investigated and compared to that of sub-2 microm porous particles (1.8 microm Zorbax Eclipse Plus C18 and 1.7 microm Acquity BEH C18). Specifically, retention, selectivity, and loading capacity were systematically compared for these two types of columns. Other chromatographic parameters such as efficiency and pressure drop were also studied. Although the fused-core column was found to provide better analyte shape selectivity, both columns had similar hydrophobic, hydrogen bonding, total ion-exchange, and acidic ion-exchange selectivities. As expected, the retention factors and sample loading capacity on the fused-core particle column were slightly lower than those for the sub-2 microm particle column. However, the most dramatic observation was that similar efficiency separations to the sub-2 microm particles could be achieved using the fused-core particles, without the expense of high column back pressure. The low pressure of the fused-core column allows fast separations to be performed routinely on a conventional LC system without significant loss in efficiency or resolution. Applications to the HPLC impurity profiling of drug substance candidates were performed using both types of columns to validate this last point. |
Databáze: | OpenAIRE |
Externí odkaz: |