Terphenylthiazole-based self-assembled monolayers on cobalt with high conductance photo-switching ratio for spintronics
Autor: | Vladimir Prudkovskiy, Imane Arbouch, Anne Léaustic, Pei Yu, Colin Van Dyck, David Guérin, Stéphane Lenfant, Talal Mallah, Jérôme Cornil, Dominique Vuillaume |
---|---|
Přispěvatelé: | Nanostructures, nanoComponents & Molecules - IEMN (NCM - IEMN), Institut d’Électronique, de Microélectronique et de Nanotechnologie - UMR 8520 (IEMN), Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL)-Centrale Lille-Université de Lille-Centre National de la Recherche Scientifique (CNRS)-Université Polytechnique Hauts-de-France (UPHF)-JUNIA (JUNIA), Université catholique de Lille (UCL)-Université catholique de Lille (UCL), Université de Mons (UMons), Institut de Chimie Moléculaire et des Matériaux d'Orsay (ICMMO), Institut de Chimie du CNRS (INC)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Centrale de Micro Nano Fabrication - IEMN (CMNF - IEMN), This work has been financially supported by the French National Research Agency (ANR), project SPINFUN ANR-17-CE24-0004. We acknowledge D. Deresmes for his valuable help with the UHV CAFM instrument, Xavier Wallart for the XPS measurements, Y. Deblock for ellipsometry. The IEMN clean-room fabrication and SPM characterization facilities are partly supported by renatech. The work of I. A. is supported by the Belgian National Fund for Scientific Research (F.R.S.-FNRS) thanks to the project SPINFUN (Convention T.0054.20). We also acknowledge the Consortium des équipements de Calcul Intensif (CéCI) funded by the Belgian National Fund for Scientific Research (F.R.S.-FNRS) for providing the computational resources. J. C. is an FNRS research director., Renatech Network, PCMP PCP, ANR-17-CE24-0004,SPINFUN,Spintronique à base de molécule fonctionnelles(2017) |
Jazyk: | angličtina |
Rok vydání: | 2022 |
Předmět: |
molecular photo-switch
molecular spintronics Condensed Matter - Mesoscale and Nanoscale Physics FOS: Physical sciences conductive-AFM Applied Physics (physics.app-ph) Physics - Applied Physics DFT/ NEGF calculations self-assembled monolayer Mesoscale and Nanoscale Physics (cond-mat.mes-hall) General Materials Science electron transport [SPI.NANO]Engineering Sciences [physics]/Micro and nanotechnologies/Microelectronics [PHYS.COND.CM-MSQHE]Physics [physics]/Condensed Matter [cond-mat]/Mesoscopic Systems and Quantum Hall Effect [cond-mat.mes-hall] |
Zdroj: | Nanoscale Nanoscale, 2022, 14, pp.5725-5742. ⟨10.1039/d2nr00591c⟩ |
ISSN: | 2040-3364 2040-3372 |
DOI: | 10.1039/d2nr00591c⟩ |
Popis: | Two new photo-switchable terphenylthiazoles molecules are synthesized and self-assembled as monolayers on Au and on ferromagnetic Co electrodes. The electron transport properties probed by conductive atomic force microscopy in ultra-high vacuum reveal a conductance of the light-induced closed (c) form larger than for the open (o) form. We report an unprecedented conductance ratio up to 380 between the closed and open forms on Co for the molecule with the anchoring group (thiol) on the side of the two N atoms of the thiazole unit. This result is rationalized by Density Functional Theory (DFT) calculations coupled to the Non-Equilibrium Green's function (NEGF) formalism. These calculations show that the high conductance in the closed form is due to a strong electronic coupling between the terphenylthiazole molecules and the Co electrode that manifests by a resonant transmission peak at the Fermi energy of the Co electrode with a large broadening. This behavior is not observed for the same molecules self-assembled on gold electrodes. These high conductance ratios make these Co-based molecular junctions attractive candidates to develop and study switchable molecular spintronic devices. Paper and supporting information |
Databáze: | OpenAIRE |
Externí odkaz: |