Collision-induced evaporation of water clusters and contribution of momentum transfer
Autor: | Florent Calvo, Linda Feketeová, Hassan Abdoul-Carime, Francis Berthias, Bernadette Farizon, Michel Farizon |
---|---|
Přispěvatelé: | Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3) |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Physics
[PHYS]Physics [physics] Argon Projectile Momentum transfer Intermolecular force Optical physics chemistry.chemical_element 02 engineering and technology 021001 nanoscience & nanotechnology Collision 01 natural sciences Molecular physics Atomic and Molecular Physics and Optics Molecular dynamics chemistry 13. Climate action 0103 physical sciences Atomic physics 010306 general physics 0210 nano-technology Pair potential |
Zdroj: | Eur.Phys.J.D Eur.Phys.J.D, 2017, 71 (5), ⟨10.1140/epjd/e2017-80062-5⟩ |
Popis: | International audience; The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior. |
Databáze: | OpenAIRE |
Externí odkaz: |