Collision-induced evaporation of water clusters and contribution of momentum transfer

Autor: Florent Calvo, Linda Feketeová, Hassan Abdoul-Carime, Francis Berthias, Bernadette Farizon, Michel Farizon
Přispěvatelé: Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA)-Université Joseph Fourier - Grenoble 1 (UJF), Institut de Physique Nucléaire de Lyon (IPNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)-Centre National de la Recherche Scientifique (CNRS), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019]), Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Institut National de Physique Nucléaire et de Physique des Particules du CNRS (IN2P3)
Jazyk: angličtina
Rok vydání: 2017
Předmět:
Zdroj: Eur.Phys.J.D
Eur.Phys.J.D, 2017, 71 (5), ⟨10.1140/epjd/e2017-80062-5⟩
Popis: International audience; The evaporation of water molecules from high-velocity argon atoms impinging on protonated water clusters has been computationally investigated using molecular dynamics simulations with the reactive OSS2 potential to model water clusters and the ZBL pair potential to represent their interaction with the projectile. Swarms of trajectories and an event-by-event analysis reveal the conditions under which a specific number of molecular evaporation events is found one nanosecond after impact, thereby excluding direct knockout events from the analysis. These simulations provide velocity distributions that exhibit two main features, with a major statistical component arising from a global redistribution of the collision energy into intermolecular degrees of freedom, and another minor but non-ergodic feature at high velocities. The latter feature is produced by direct impacts on the peripheral water molecules and reflects a more complete momentum transfer. These two components are consistent with recent experimental measurements and confirm that electronic processes are not explicitly needed to explain the observed non-ergodic behavior.
Databáze: OpenAIRE