Anticipating Cutoff Diameters in Deterministic Lateral Displacement (DLD) Microfluidic Devices for an Optimized Particle Separation
Autor: | François Boizot, Eloise Pariset, Aurélie Thuaire, Jean Berthier, Vincent Agache, Catherine Pudda, Nicolas Verplanck |
---|---|
Přispěvatelé: | Département Microtechnologies pour la Biologie et la Santé (DTBS), Commissariat à l'énergie atomique et aux énergies alternatives - Laboratoire d'Electronique et de Technologie de l'Information (CEA-LETI), Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Technologique (CEA) (DRT (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA), CFR CEA, FET Proactive H2020 Viruscan project [731868], BactiDIAG - BPI France under FUI [FUI-AAP18] |
Jazyk: | angličtina |
Rok vydání: | 2017 |
Předmět: |
Work (thermodynamics)
nanometer and micrometer-sized particle separation Microfluidics 02 engineering and technology 01 natural sciences Biomaterials [SPI]Engineering Sciences [physics] Optics Particle separation Dimension (vector space) Cutoff General Materials Science Physics business.industry 010401 analytical chemistry General Chemistry 021001 nanoscience & nanotechnology Lateral displacement 0104 chemical sciences multiple critical diameters Particle deterministic lateral displacement 0210 nano-technology business numerical model Biotechnology Communication channel intermediary trajectory |
Zdroj: | Small Small, 2017, 13 (37), pp.1701901. ⟨10.1002/smll.201701901⟩ Small, Wiley-VCH Verlag, 2017, 13 (37), pp.1701901. ⟨10.1002/smll.201701901⟩ |
ISSN: | 1613-6810 1613-6829 |
Popis: | International audience; Deterministic lateral displacement (DLD) devices enable to separate nanometer to micrometer-sized particles around a cutoff diameter, during their transport through a microfluidic channel with slanted rows of pillars. In order to design appropriate DLD geometries for specific separation sizes, robust models are required to anticipate the value of the cutoff diameter. So far, the proposed models result in a single cutoff diameter for a given DLD geometry. This paper shows that the cutoff diameter actually varies along the DLD channel, especially in narrow pillar arrays. Experimental and numerical results reveal that the variation of the cutoff diameter is induced by boundary effects at the channel side walls, called the wall effect. The wall effect generates unexpected particle trajectories that may compromise the separation efficiency. In order to anticipate the wall effect when designing DLD devices, a predictive model is proposed in this work and has been validated experimentally. In addition to the usual geometrical parameters, a new parameter, the number of pillars in the channel cross dimension, is considered in this model to investigate its influence on the particle trajectories. |
Databáze: | OpenAIRE |
Externí odkaz: |