Extension of the SAEM algorithm for nonlinear mixed models with 2 levels of random effects

Autor: Xavière Panhard, Adeline Samson
Přispěvatelé: Comets, Emmanuelle, Modèles et méthodes de l'évaluation thérapeutique des maladies chroniques (U738 / UMR_S738), Université Paris Diderot - Paris 7 (UPD7)-Institut National de la Santé et de la Recherche Médicale (INSERM), Mathématiques Appliquées Paris 5 (MAP5 - UMR 8145), Université Paris Descartes - Paris 5 (UPD5)-Institut National des Sciences Mathématiques et de leurs Interactions (INSMI)-Centre National de la Recherche Scientifique (CNRS), Modèles et méthodes de l'évaluation thérapeutique des maladies chroniques, Université Paris Diderot - Paris 7 ( UPD7 ) -Institut National de la Santé et de la Recherche Médicale ( INSERM ), Mathématiques Appliquées à Paris 5 ( MAP5 - UMR 8145 ), Université Paris Descartes - Paris 5 ( UPD5 ) -Institut National des Sciences Mathématiques et de leurs Interactions-Centre National de la Recherche Scientifique ( CNRS ), Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Paris Diderot - Paris 7 (UPD7)
Jazyk: angličtina
Rok vydání: 2009
Předmět:
Time Factors
Computer science
Pyridines
MESH: Drug Interactions
SAEM algorithm
030226 pharmacology & pharmacy
01 natural sciences
MESH: Regression Analysis
MESH : Biometry
MESH: Theophylline
010104 statistics & probability
MESH : Therapeutic Equivalency
0302 clinical medicine
Cross-over trial
MESH : Regression Analysis
Statistics
Cluster Analysis
Drug Interactions
MESH : Bias (Epidemiology)
MESH: Anti-HIV Agents
[ SDV.BIBS ] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
MESH: Biometry
MESH : Algorithms
[INFO.INFO-BI] Computer Science [cs]/Bioinformatics [q-bio.QM]
Likelihood Functions
Cross-Over Studies
[SDV.BIBS] Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
Estimation theory
Mathematical statistics
Multilevel nonlinear mixed effects models
Regression analysis
Bioequivalence trials
General Medicine
MESH : Nonlinear Dynamics
MESH: Bias (Epidemiology)
Random effects model
[SDV.BIBS]Life Sciences [q-bio]/Quantitative Methods [q-bio.QM]
Markov Chains
3. Good health
Multiple periods
MESH: Nonlinear Dynamics
Area Under Curve
MESH: Oligopeptides
Regression Analysis
Statistics
Probability and Uncertainty

MESH : Likelihood Functions
Algorithm
Monte Carlo Method
Oligopeptides
Algorithms
MESH : Time Factors
MESH : Oligopeptides
Statistics and Probability
MESH : Pyridines
Biometry
Anti-HIV Agents
Atazanavir Sulfate
MESH: Algorithms
MESH: Monte Carlo Method
Stochastic approximation
MESH: Therapeutic Equivalency
Article
MESH: Cross-Over Studies
03 medical and health sciences
Bias
Theophylline
MESH: Markov Chains
[ INFO.INFO-BI ] Computer Science [cs]/Bioinformatics [q-bio.QM]
MESH : Theophylline
MESH : Cluster Analysis
Humans
0101 mathematics
MESH : Markov Chains
MESH: Humans
Markov chain
MESH : Anti-HIV Agents
MESH : Humans
MESH: Pyridines
MESH: Time Factors
Conditional probability distribution
MESH : Cross-Over Studies
MESH: Cluster Analysis
MESH : Drug Interactions
MESH : Monte Carlo Method
Nonlinear Dynamics
Therapeutic Equivalency
MESH: Area Under Curve
MESH: Likelihood Functions
MESH : Area Under Curve
[INFO.INFO-BI]Computer Science [cs]/Bioinformatics [q-bio.QM]
Sufficient statistic
Zdroj: Biostatistics
Biostatistics, 2009, 10 (1), pp.121-35. ⟨10.1093/biostatistics/kxn020⟩
Biostatistics, Oxford University Press (OUP), 2009, 10 (1), pp.121-35. 〈10.1093/biostatistics/kxn020〉
Biostatistics, Oxford University Press (OUP), 2009, 10 (1), pp.121-35. ⟨10.1093/biostatistics/kxn020⟩
ISSN: 1465-4644
1468-4357
DOI: 10.1093/biostatistics/kxn020
Popis: International audience; This article focuses on parameter estimation of multilevel nonlinear mixed-effects models (MNLMEMs). These models are used to analyze data presenting multiple hierarchical levels of grouping (cluster data, clinical trials with several observation periods, ...). The variability of the individual parameters of the regression function is thus decomposed as a between-subject variability and higher levels of variability (e.g. within-subject variability). We propose maximum likelihood estimates of parameters of those MNLMEMs with 2 levels of random effects, using an extension of the stochastic approximation version of expectation-maximization (SAEM)-Monte Carlo Markov chain algorithm. The extended SAEM algorithm is split into an explicit direct expectation-maximization (EM) algorithm and a stochastic EM part. Compared to the original algorithm, additional sufficient statistics have to be approximated by relying on the conditional distribution of the second level of random effects. This estimation method is evaluated on pharmacokinetic crossover simulated trials, mimicking theophylline concentration data. Results obtained on those data sets with either the SAEM algorithm or the first-order conditional estimates (FOCE) algorithm (implemented in the nlme function of R software) are compared: biases and root mean square errors of almost all the SAEM estimates are smaller than the FOCE ones. Finally, we apply the extended SAEM algorithm to analyze the pharmacokinetic interaction of tenofovir on atazanavir, a novel protease inhibitor, from the Agence Nationale de Recherche sur le Sida 107-Puzzle 2 study. A significant decrease of the area under the curve of atazanavir is found in patients receiving both treatments.
Databáze: OpenAIRE