An intuitionistic logic for preference relations
Autor: | Alberto Naibo, Paolo Maffezioli |
---|---|
Přispěvatelé: | Departament de Filosofia, Universitat de Barcelona, Institut d'Histoire et de Philosophie des Sciences et des Techniques (IHPST), Université Paris 1 Panthéon-Sorbonne (UP1)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
Logic
010102 general mathematics [SHS.PHIL]Humanities and Social Sciences/Philosophy 06 humanities and the arts Intuitionistic logic 16. Peace & justice 0603 philosophy ethics and religion 01 natural sciences Preference 060302 philosophy 0101 mathematics Mathematical economics ComputingMilieux_MISCELLANEOUS Mathematics |
Zdroj: | Logic Journal of the IGPL Logic Journal of the IGPL, Oxford University Press (OUP), 2019, 27 (4), pp.434-450. ⟨10.1093/jigpal/jzz013⟩ |
ISSN: | 1367-0751 1368-9894 |
DOI: | 10.1093/jigpal/jzz013⟩ |
Popis: | We investigate in intuitionistic first-order logic various principles of preference relations alternative to the standard ones based on the transitivity and completeness of weak preference. In particular, we suggest two ways in which completeness can be formulated while remaining faithful to the spirit of constructive reasoning, and we prove that the cotransitivity of the strict preference relation is a valid intuitionistic alternative to the transitivity of weak preference. Along the way, we also show that the acyclicity axiom is not finitely axiomatizable in first-order logic. |
Databáze: | OpenAIRE |
Externí odkaz: |