Imaging Native Calcium Currents in Brain Slices

Autor: Marco Canepari, Nadia Jaafari, Nicola Kuczewski, Karima Ait Ouares
Přispěvatelé: Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy ), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes (UGA), Centre de recherche en neurosciences de Lyon (CRNL), Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-Université de Lyon-Université Jean Monnet [Saint-Étienne] (UJM)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Centre National de la Recherche Scientifique (CNRS), Laboratoire Interdisciplinaire de Physique [Saint Martin d’Hères] (LIPhy), Centre National de la Recherche Scientifique (CNRS)-Université Grenoble Alpes [2016-2019] (UGA [2016-2019])
Jazyk: angličtina
Rok vydání: 2020
Předmět:
Zdroj: Calcium Signaling
Calcium Signaling, pp.73-91, 2020, Advances in Experimental Medicine and Biology, ⟨10.1007/978-3-030-12457-1_4⟩
Calcium Signaling, pp.73-91, 2019, ⟨10.1007/978-3-030-12457-1_4⟩
Advances in Experimental Medicine and Biology ISBN: 9783030124564
DOI: 10.1007/978-3-030-12457-1_4⟩
Popis: Imaging techniques may overcome the limitations of electrode techniques to measure locally not only membrane potential changes, but also ionic currents. Here, we review a recently developed approach to image native neuronal Ca2+ currents from brain slices. The technique is based on combined fluorescence recordings using low-affinity Ca2+ indicators possibly in combination with voltage sensitive dyes. We illustrate how the kinetics of a Ca2+ current can be estimated from the Ca2+ fluorescence change and locally correlated with the change of membrane potential, calibrated on an absolute scale, from the voltage fluorescence change. We show some representative measurements from the dendrites of CA1 hippocampal pyramidal neurons, from olfactory bulb mitral cells and from cerebellar Purkinje neurons. We discuss the striking difference in data analysis and interpretation between Ca2+ current measurements obtained using classical electrode techniques and the physiological currents obtained using this novel approach. Finally, we show how important is the kinetic information on the native Ca2+ current to explore the potential molecular targets of the Ca2+ flux from each individual Ca2+ channel.
Databáze: OpenAIRE