Peierls' substitution for low lying spectral energy windows

Autor: Radu Purice, Horia D. Cornean, Bernard Helffer
Přispěvatelé: Department of Mathematical Sciences [Aalborg], Aalborg University [Denmark] (AAU), Laboratoire de Mathématiques Jean Leray (LMJL), Centre National de la Recherche Scientifique (CNRS)-Université de Nantes - UFR des Sciences et des Techniques (UN UFR ST), Université de Nantes (UN)-Université de Nantes (UN), 'Simion Stoilow' Institute of Mathematics (IMAR), Romanian Academy of Sciences
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Cornean, H, Helffer, B & Purice, R 2019, ' Peierls' substitution for low lying spectral energy windows ', Journal of Spectral Theory, vol. 9, no. 4, pp. 1179-1222 . https://doi.org/10.4171/JST/274
Journal of Spectral Theory
Journal of Spectral Theory, European Mathematical Society, In press
ISSN: 1664-039X
1664-0403
DOI: 10.4171/JST/274
Popis: We consider a $2d$ magnetic Schr\"odinger operator perturbed by a weak magnetic field which slowly varies around a positive mean. In a previous paper we proved the appearance of a `Landau type' structure of spectral islands at the bottom of the spectrum, under the hypothesis that the lowest Bloch eigenvalue of the unperturbed operator remained simple on the whole Brillouin zone, even though its range may overlap with the range of the second eigenvalue. We also assumed that the first Bloch spectral projection was smooth and had a zero Chern number. In this paper we extend our previous results to the only two remaining possibilities: either the first Bloch eigenvalue remains isolated while its corresponding spectral projection has a non-zero Chern number, or the first two Bloch eigenvalues cross each other.
Comment: 27 pages
Databáze: OpenAIRE