Linear response, or else
Autor: | Baladi, Viviane, Benedicks, Michael, Schnellmann, Daniel |
---|---|
Přispěvatelé: | Département de Mathématiques et Applications - ENS Paris (DMA), École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Centre National de la Recherche Scientifique (CNRS), Mathematics KTH, Royal Institute of Technology [Stockholm] (KTH ), Baladi, Viviane, Centre National de la Recherche Scientifique (CNRS)-École normale supérieure - Paris (ENS Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL) |
Jazyk: | angličtina |
Rok vydání: | 2014 |
Předmět: |
Mathematics::Dynamical Systems
SRB measure Mathematics::Complex Variables [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] [MATH.MATH-DS] Mathematics [math]/Dynamical Systems [math.DS] 37C40 (Primary) 37D25 37C30 37E05 (Secondary) Dynamical Systems (math.DS) Transfer operator Physical measure Bifurcations MSC: Primary 37C40 Secondary 37D25 37C30 37E05 Differentiable dynamical system FOS: Mathematics Unimodal maps Hyperbolic dynamical systems Mathematics - Dynamical Systems Linear response Ruelle operator Expanding interval maps |
Popis: | Consider a smooth one-parameter family t -> f_t of dynamical systems f_t, with |t| m_t is differentiable at t=0 (possibly in the sense of Whitney), and if its derivative can be expressed as a function of f_0, m_0, and d_t f_t|_(t=0). The goal of this note is to present to a general mathematical audience recent results and open problems in the theory of linear response for chaotic dynamical systems, possibly with bifurcations. Comment: ICM Seoul 2014 talk |
Databáze: | OpenAIRE |
Externí odkaz: |