Oxygen semi-permeation, oxygen diffusion and surface exchange coefficient of La(1−x)SrxFe(1−y)GayO3−δ perovskite membranes
Autor: | Nicolas Richet, Thierry Chartier, Sébastien Fourcade, P. Del Gallo, Pierre-Marie Geffroy, Jean-Marc Bassat, Aurélien Vivet |
---|---|
Přispěvatelé: | Axe 1 : procédés céramiques, Science des Procédés Céramiques et de Traitements de Surface (SPCTS), Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Université de Limoges (UNILIM)-Ecole Nationale Supérieure de Céramique Industrielle (ENSCI)-Institut des Procédés Appliqués aux Matériaux (IPAM), Université de Limoges (UNILIM)-Université de Limoges (UNILIM)-Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS), Institut de Chimie de la Matière Condensée de Bordeaux (ICMCB), Institut de Chimie du CNRS (INC)-Centre National de la Recherche Scientifique (CNRS)-Institut Polytechnique de Bordeaux-Université de Bordeaux (UB), Centre de Recherche Claude Delorme [Jouy-en-Josas] (CRCD), Air Liquide [Siège Social] |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Oxygen diffusion coefficient
Inorganic chemistry Analytical chemistry chemistry.chemical_element Filtration and Separation 02 engineering and technology 010402 general chemistry Perovskite 7. Clean energy 01 natural sciences Biochemistry Oxygen Catalytic membrane reactor Oxygen permeability General Materials Science Physical and Theoretical Chemistry Perovskite (structure) Membrane reactor Chemistry Oxygen transport Oxygen semi-permeation Partial pressure [CHIM.MATE]Chemical Sciences/Material chemistry Permeation 021001 nanoscience & nanotechnology 0104 chemical sciences Membrane 13. Climate action Oxygen surface exchange 0210 nano-technology |
Zdroj: | Journal of Membrane Science Journal of Membrane Science, Elsevier, 2010, 354 (1-2), pp.6-13. ⟨10.1016/j.memsci.2010.03.001⟩ |
ISSN: | 0376-7388 |
DOI: | 10.1016/j.memsci.2010.03.001⟩ |
Popis: | Mixed ionic and electronic conductors (MIEC) have presented great economical and environmental interests for these last years because of their potential applications for electrode materials in solid oxide fuel cell and for oxygen separation form air such as in catalytic membrane reactors for methane conversion into syngas (H 2 –CO mixture) (A.F. Sammells, M. Schwartz, R.A. Mackay, T.F. Barton, D.R. Peterson [1] , U. Balachandran, J.T. Dusek, R.L. Mieville, R.B. Poeppel, M.S. Kleefisch [2] , H.J.M. Bouwmeester, B.A. Boukamp [3] ). A good compromise between oxygen permeability, chemical stability and physical properties is required to optimize the process. La (1− x ) Sr x Fe (1− y ) Ga y O 3− δ materials fulfill this requirement and were retained as membrane for catalytic membrane reactor (CMR) (Y. Teraoka [4] , G. Etchegoyen, T. Chartier [5] ). Oxygen semi-permeations through La (1− x ) Sr x Fe (1− y ) Ga y O 3− δ membranes have been measured under various oxygen partial pressure gradients from 973 K to 1273 K, and compared with the values obtained by isotopic oxygen exchange depth experiments (S. Kim, S. Wang, X. Chen, Y.L. Yang, N. Wu, A. Ignatiev, A.J. Jacobson, and B. Abeles [6] ). Those results lead to a better understanding of the oxygen transport through the membrane and the influence of Sr and Ga amounts on oxygen semi-permeation through the membrane. The influence of Ga amount is not limited to the improvement of dimensional stabilities but it also increases oxygen diffusion and surface exchange kinetic. This paper suggests that La 0.6 Sr 0.4 Fe 0.6 Ga 0.4 O 3− δ perovskite is a very good compromise for membrane reactor materials and opens new perspectives on membrane architecture development. |
Databáze: | OpenAIRE |
Externí odkaz: |
načítá se...