Hydrophilicity‐Hydrophobicity Transformation, Thermoresponsive Morphomechanics, and Crack Multifurcation Revealed by AIEgens in Mechanically Strong Hydrogels

Autor: Xiaofan Ji, Lucile Barbier, Nicolas Sanson, Jacky Wing Yip Lam, Dominique Hourdet, Ben Zhong Tang, Alba Marcellan, Zhao Li, Yubing Hu, Heiva Le Blay
Přispěvatelé: Department of Chemistry The Hong Kong University of Science and Technology, Sciences et Ingénierie de la Matière Molle (UMR 7615) (SIMM), Ecole Superieure de Physique et de Chimie Industrielles de la Ville de Paris (ESPCI Paris), Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Institut de Chimie du CNRS (INC)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Sorbonne Université (SU)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Zdroj: Advanced Materials
Advanced Materials, Wiley-VCH Verlag, 2021, pp.2101500. ⟨10.1002/adma.202101500⟩
ISSN: 0935-9648
1521-4095
Popis: International audience; Biomimetic exploration of stimuli-responsive and crack-resistant hydrogels is of great academic and practical significance, although the rational design of tough hydrogels is limited by insufficient mechanism study due to the lack of imaging techniques to "see" hydrogels at mesoscale level. We designed a series of composite hydrogels with compartmentalized thermal response by incorporating aggregation-and polarity-sensitive fluorescent probes in a poly(N-isopropylacrylamide) (PNIPAM) network grafted with poly(N,N-dimethylacrylamide) side-chains. We explore the fluorescence technique as a powerful tool to directly visualize their hydrophilicity-hydrophobicity transformation and the composition-dependent microphase separation. Based on the morphological observation and mechanical measurements, the concept of morphomechanics with a comprehensive mechanism clarification is proposed. In this regard, the thermoresponsive toughening are attributed to the formation of multiple noncovalent interactions and the conformational changes of PNIPAM chains. The enhanced fracture energy by crack multifurcation is related to the tearing-like disruption of weak interfaces between the separated phases.
Databáze: OpenAIRE