In Vivo Interrogation of Spinal Mechanosensory Circuits
Autor: | Karl Deisseroth, Saurabh Vyas, Charu Ramakrishnan, Sam Vesuna, Amaury François, Shrivats Mohan Iyer, Grégory Scherrer, Scott L. Delp, Amelia J. Christensen |
---|---|
Přispěvatelé: | Stanford University, Institut de Génomique Fonctionnelle (IGF), Université de Montpellier (UM)-Université Montpellier 1 (UM1)-Institut National de la Santé et de la Recherche Médicale (INSERM)-Université Montpellier 2 - Sciences et Techniques (UM2)-Centre National de la Recherche Scientifique (CNRS) |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
0301 basic medicine
Dorsum Light Optogenetics Biology somatostatin Somatosensory system Mechanotransduction Cellular General Biochemistry Genetics and Molecular Biology Article 03 medical and health sciences 0302 clinical medicine touch In vivo Interneurons medicine Animals itch nociception Spinal implant optogenetics lcsh:QH301-705.5 Optical Fibers Mechanosensation Pruritus spinal cord Anatomy Spinal cord Mice Inbred C57BL 030104 developmental biology Nociception medicine.anatomical_structure lcsh:Biology (General) Female [SDV.NEU]Life Sciences [q-bio]/Neurons and Cognition [q-bio.NC] Neuroscience Proto-Oncogene Proteins c-fos 030217 neurology & neurosurgery Histamine |
Zdroj: | Cell Reports Cell Reports, Elsevier Inc, 2016, 17 (6), pp.1699-1710. ⟨10.1016/j.celrep.2016.10.010⟩ Cell Reports, Vol 17, Iss 6, Pp 1699-1710 (2016) |
ISSN: | 2211-1247 |
Popis: | International audience; Spinal dorsal horn circuits receive, process, and transmit somatosensory information. To understand how specific components of these circuits contribute to behavior, it is critical to be able to directly modulate their activity in unanesthetized in vivo conditions. Here, we develop experimental tools that enable optogenetic control of spinal circuitry in freely moving mice using commonly available materials. We use these tools to examine mechanosensory processing in the spinal cord and observe that optogenetic activation of somatostatin-positive interneurons facilitates both mechanosensory and itch-related behavior, while reversible chemogenetic inhibition of these neurons suppresses mechanosensation. These results extend recent findings regarding the processing of mechanosensory information in the spinal cord and indicate the potential for activity-induced release of the somatostatin neuropeptide to affect processing of itch. The spinal implant approach we describe here is likely to enable a wide range of studies to elucidate spinal circuits underlying pain, touch, itch, and movement. |
Databáze: | OpenAIRE |
Externí odkaz: |