Chemical assessment of marine sediments in vicinity of Norwegian fish farms - A pilot study

Autor: Øyvind Mikkelsen, Shazia N. Aslam, Vishwesh Venkatraman, Marco Skibnes Venzi
Rok vydání: 2020
Předmět:
Zdroj: The Science of the total environment. 732
ISSN: 1879-1026
Popis: While aquaculture is growing rapidly all over the world and generating many economic benefits, so have the environmental concerns about the externalities posed by the fish-farming industry. The distribution profiles of organic compounds and inorganic elements were explored in marine surface sediments collected in proximity of two active Norwegian fish farms, Hestøya and Nørholmen (200-1100 m from the perimeter edge of the installations). Overall, the sediment organic matter (SOM) content was 7.3 ± 4.9%, with 7.9 ± 5.1% and 4.0 ± 0.5% for Hestøya and Nørholmen, respectively. A non-targeted analysis was performed for screening organic compounds in marine sediments, and the presence of 60 compounds was detected. Among suspect compounds were alkanes, alkenes, aromatics, aldehydes, ketones, esters, alcohols, diols, polycyclic aromatic hydrocarbons (PAHs), terpenes and terpenoids. Heptanal, benzaldehyde, 4-oxoisophorone, 1,7-dimethylnaphthalene and 3-bromophenol were the most abundant compounds in marine sediments. In total, concentrations of 47 elements were measured, concentrations of As, Cd, Cr, Cu, Hg, Mo, Ni, Sn and Zn were strongly influenced by anthropogenic inputs, while concentrations of Ce, Co, Al, Fe and Ti were related to the geology of the local bedrock. The chemical composition of marine sediments was different at Hestøya and Nørholmen, indicating different anthropogenic inputs in these areas. In general, concentrations of toxic elements were below the proposed guidelines for Norwegian marine sediment quality and can be characterised as background pollution. Overall, fish-farming activities had only a minor or negligible influence on marine sediments and are unlikely to cause any harm to local aquatic life in the studied area.
Databáze: OpenAIRE