Toric invariant theory for maximum likelihood estimation in log-linear models
Autor: | Carlos Améndola, Kathlén Kohn, Philipp Reichenbach, Anna Seigal |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2020 |
Předmět: |
010102 general mathematics
14L24 14P05 20G45 62F10 62H22 62R01 Pharmaceutical Science Mathematics - Statistics Theory Statistics Theory (math.ST) 16. Peace & justice 01 natural sciences 010104 statistics & probability Mathematics - Algebraic Geometry Complementary and alternative medicine FOS: Mathematics Pharmacology (medical) 0101 mathematics Algebraic Geometry (math.AG) |
Popis: | We establish connections between invariant theory and maximum likelihood estimation for discrete statistical models. We show that norm minimization over a torus orbit is equivalent to maximum likelihood estimation in log-linear models. We use notions of stability under a torus action to characterize the existence of the maximum likelihood estimate, and discuss connections to scaling algorithms. This is a companion paper to arXiv:2003.13662. v2: referee comments worked in, added appendices A and B |
Databáze: | OpenAIRE |
Externí odkaz: |