A Portfolio Diversification Strategy via Tail Dependence Clustering

Autor: Fabrizio Durante, Roberta Pappadà, Enrico Foscolo, Hao Wang
Přispěvatelé: Maria Brigida Ferraro, Paolo Giordani, Barbara Vantaggi, Marek Gagolewski, María Ángeles Gil, Przemysław Grzegorzewski, Olgierd Hryniewicz, Wang, Hao, Pappada', Roberta, Durante, Fabrizio, Foscolo, Enrico, Ferraro, MB, Giordani, P, Vantaggi, B, Gagolewski, M, Gil, MA, Grzegorzewski, P, Hryniewicz, O, Pappada' , Roberta
Rok vydání: 2016
Předmět:
Zdroj: Advances in Intelligent Systems and Computing ISBN: 9783319429717
SMPS
DOI: 10.1007/978-3-319-42972-4_63
Popis: We provide a two-stage portfolio selection procedure in order to increase the diversification benefits in a bear market. By exploiting tail dependence-based risky measures, a cluster analysis is carried out for discerning between assets with the same performance in risky scenarios. Then, the portfolio composition is determined by fixing a number of assets and by selecting only one item from each cluster. Empirical calculations on the EURO STOXX 50 prove that investing on selected assets in trouble periods may improve the performance of risk-averse investors.
Databáze: OpenAIRE