Hyperbolic 3-manifolds with large kissing number
Autor: | Cayo Dória, Plinio G. P. Murillo |
---|---|
Rok vydání: | 2021 |
Předmět: |
Physics
Sequence Finite volume method Mathematics - Number Theory Applied Mathematics General Mathematics Dimension (graph theory) Geometric Topology (math.GT) Metric Geometry (math.MG) Mathematics::Geometric Topology Combinatorics Mathematics - Geometric Topology Mathematics - Metric Geometry FOS: Mathematics Number Theory (math.NT) Kissing number problem |
Zdroj: | Proceedings of the American Mathematical Society. 149:4595-4607 |
ISSN: | 1088-6826 0002-9939 |
DOI: | 10.1090/proc/15575 |
Popis: | In this article we construct a sequence $\{M_i\}$ of non compact finite volume hyperbolic $3$-manifolds whose kissing number grows at least as $\mathrm{vol}(M_i)^{\frac{31}{27}-\epsilon}$ for any $\epsilon>0$. This extends a previous result due to Schmutz in dimension $2$. Comment: 15 pages; introduction rewritten; includes minor corrections and update of references; to appear in Proceedings of the AMS |
Databáze: | OpenAIRE |
Externí odkaz: |