Hyperbolic 3-manifolds with large kissing number

Autor: Cayo Dória, Plinio G. P. Murillo
Rok vydání: 2021
Předmět:
Zdroj: Proceedings of the American Mathematical Society. 149:4595-4607
ISSN: 1088-6826
0002-9939
DOI: 10.1090/proc/15575
Popis: In this article we construct a sequence $\{M_i\}$ of non compact finite volume hyperbolic $3$-manifolds whose kissing number grows at least as $\mathrm{vol}(M_i)^{\frac{31}{27}-\epsilon}$ for any $\epsilon>0$. This extends a previous result due to Schmutz in dimension $2$.
Comment: 15 pages; introduction rewritten; includes minor corrections and update of references; to appear in Proceedings of the AMS
Databáze: OpenAIRE