Zelevinsky's involution at roots of unity
Autor: | E. Vasserot, J. Y. Thibon, B. Leclerc |
---|---|
Jazyk: | angličtina |
Rok vydání: | 1998 |
Předmět: |
Pure mathematics
Root of unity Applied Mathematics General Mathematics Mathematics::Rings and Algebras Quantum algebra Filtered algebra Nilpotent Irreducible representation Mathematics - Quantum Algebra FOS: Mathematics Quantum Algebra (math.QA) Isomorphism Mathematics::Representation Theory Mathematics Affine Hecke algebra Vector space |
Popis: | We give a combinatorial algorithm for computing Zelevinsky's involution of the set of isomorphism classes of irreducible representations of the affine Hecke algebra $\H_m(t)$ when $t$ is a primitive $n$th root of 1. We show that the same map can also be interpreted in terms of aperiodic nilpotent orbits of $\Zb/n\Zb$-graded vector spaces. 17 pages, Latex, epsf macros |
Databáze: | OpenAIRE |
Externí odkaz: |