Single intratracheal administration of cross-linked water-soluble acrylic acid polymer causes acute alveolo-interstitial inflammation and the subsequent fibrotic formation possibly via the TGF-β1 pathway in the lung of rats

Autor: Masayuki Yokoyama, Takamasa Kido, Takashi Okano, Eri Hachisuka, Hiroshi Hano, Machi Suka, Hiroto Okoshi, Takashi Yamauchi, Hiroyuki Yanagisawa, Wataru Yoshioka
Rok vydání: 2020
Předmět:
Zdroj: Toxicology. 448
ISSN: 1879-3185
Popis: In a Japanese chemical factory, a lung disease like pneumoconiosis appeared at a high rate among workers handling cross-linked water-soluble acrylic acid polymer (CWAAP). To our knowledge, no such case was known in the world until very recently. The present study was designed to elucidate the effect of single intratracheal CWAAP instillation on the lung of rats. The CWAAP group had a significant increase in relative lung weight accompanied by a significant elevation in the number of total cells, total protein concentrations, and myeloperoxidase concentrations in bronchoalveolar lavage fluid when compared to the control group. The histopathological study revealed acute lung inflammation with the destruction of alveoli. The factors promoting fibrosis, macrophages, TGF-β1, collagen and fibronectin vs. the factors suppressing fibrosis, matrix metalloproteinases were more powerfully driven in the CWAAP group, resultantly leading to fibrotic formation. In turn, we examined if acute lung inflammation and the subsequent fibrotic formation seen in the CWAAP group appeared in the other water-soluble polymer groups. Their histopathological findings were observed only in the polyacrylic acid sodium (PAAS), a monomer of CWAAP, group. The degree of inflammation and fibrogenesis was stronger in the CWAAP group than in the PAAS group. In conclusion, the present study demonstrated the induction of acute lung inflammation and the subsequent fibrotic formation by single intratracheal CWAAP instillation. The structural features of CWAAP that contains many carboxyl groups and cross-linked chains may be responsible for enhanced inflammation and fibrogenesis in the lung.
Databáze: OpenAIRE