Open loop tomography with artificial neural networks on CANARY : on-sky results

Autor: Richard M. Myers, Damien Gratadour, James Osborn, Eric Gendron, Tim Morris, M. L. Sánchez Rodríguez, Timothy Butterley, M. Gomez Victoria, A. Guesalaga, Dani Guzman, Gérard Rousset, Alastair Basden, F. Sánchez Lasheras, F. J. de Cos Juez
Přispěvatelé: Public Health Science, Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome] (UNIROMA), Department of Physics [Durham University], Durham University, Laboratoire d'études spatiales et d'instrumentation en astrophysique (LESIA), Université Pierre et Marie Curie - Paris 6 (UPMC)-Institut national des sciences de l'Univers (INSU - CNRS)-Observatoire de Paris, Université Paris sciences et lettres (PSL)-Université Paris sciences et lettres (PSL)-Université Paris Diderot - Paris 7 (UPD7)-Centre National de la Recherche Scientifique (CNRS), Department of Physics, Centre for Advanced Instrumentation, Pontificia Universidad Católica de Chile (UC), Universidad de Oviedo [Oviedo], Laboratoire d'Astrophysique de Marseille (LAM), Aix Marseille Université (AMU)-Institut national des sciences de l'Univers (INSU - CNRS)-Centre National d'Études Spatiales [Toulouse] (CNES)-Centre National de la Recherche Scientifique (CNRS), Università degli Studi di Roma 'La Sapienza' = Sapienza University [Rome], Oviedo University, Centre National de la Recherche Scientifique (CNRS)-Institut national des sciences de l'Univers (INSU - CNRS)-Aix Marseille Université (AMU)-Centre National d'Études Spatiales [Toulouse] (CNES)
Rok vydání: 2014
Předmět:
Zdroj: Monthly notices of the Royal Astronomical Society, 2014, Vol.441(3), pp.2508-2514 [Peer Reviewed Journal]
Scopus
RUO. Repositorio Institucional de la Universidad de Oviedo
instname
Monthly Notices of the Royal Astronomical Society
Monthly Notices of the Royal Astronomical Society, 2014, 441 (3), pp.2508-2514. ⟨10.1093/mnras/stu758⟩
Monthly Notices of the Royal Astronomical Society, Oxford University Press (OUP): Policy P-Oxford Open Option A, 2014, 441 (3), pp.2508-2514. ⟨10.1093/mnras/stu758⟩
RUO: Repositorio Institucional de la Universidad de Oviedo
Universidad de Oviedo (UNIOVI)
MONTHLY NOTICES OF THE ROYAL ASTRONOMICAL SOCIETY
Artículos CONICYT
CONICYT Chile
instacron:CONICYT
ISSN: 0035-8711
1365-2966
DOI: 10.1093/mnras/stu758⟩
Popis: We present recent results from the initial testing of an Artificial Neural Network (ANN) based tomographic reconstructor Complex Atmospheric Reconstructor based on Machine lEarNing (CARMEN) on Canary, an Adaptive Optics demonstrator operated on the 4.2m William Herschel Telescope, La Palma. The reconstructor was compared with contemporaneous data using the Learn and Apply (L&A) tomographic reconstructor. We find that the fully optimised L&A tomographic reconstructor outperforms CARMEN by approximately 5% in Strehl ratio or 15nm rms in wavefront error. We also present results for Canary in Ground Layer Adaptive Optics mode to show that the reconstructors are tomographic. The results are comparable and this small deficit is attributed to limitations in the training data used to build the ANN. Laboratory bench tests show that the ANN can out perform L&A under certain conditions, e.g. if the higher layer of a model two layer atmosphere was to change in altitude by ~300~m (equivalent to a shift of approximately one tenth of a subaperture).
8 pages, 6 figures
Databáze: OpenAIRE