Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots

Autor: Marcel J. T. Reinders, Jos Joore, Alan F. List, Maikel P. Peppelenbosch, Jetse Scholma, Marc Hulsman, Janine N. Post, Stefano Schivo, Gwenny M. Fuhler
Přispěvatelé: Human genetics, General practice, Other Research, Developmental BioEngineering, Gastroenterology & Hepatology
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Scientific Reports, 6:26695. Nature Publishing Group
Scientific Reports
Scientific reports, 6:26695. Nature Publishing Group
Scholma, J, Fuhler, G M, Joore, J, Hulsman, M, Schivo, S, List, A F, Reinders, M J T, Peppelenbosch, M P & Post, J N 2016, ' Improved intra-array and interarray normalization of peptide microarray phosphorylation for phosphorylome and kinome profiling by rational selection of relevant spots ', Scientific Reports, vol. 6, 26695 . https://doi.org/10.1038/srep26695
Scientific Reports, 6. Nature Publishing Group
ISSN: 2045-2322
Popis: Massive parallel analysis using array technology has become the mainstay for analysis of genomes and transcriptomes. Analogously, the predominance of phosphorylation as a regulator of cellular metabolism has fostered the development of peptide arrays of kinase consensus substrates that allow the charting of cellular phosphorylation events (often called kinome profiling). However, whereas the bioinformatical framework for expression array analysis is well-developed, no advanced analysis tools are yet available for kinome profiling. Especially intra-array and interarray normalization of peptide array phosphorylation remain problematic, due to the absence of “housekeeping” kinases and the obvious fallacy of the assumption that different experimental conditions should exhibit equal amounts of kinase activity. Here we describe the development of analysis tools that reliably quantify phosphorylation of peptide arrays and that allow normalization of the signals obtained. We provide a method for intraslide gradient correction and spot quality control. We describe a novel interarray normalization procedure, named repetitive signal enhancement, RSE, which provides a mathematical approach to limit the false negative results occuring with the use of other normalization procedures. Using in silico and biological experiments we show that employing such protocols yields superior insight into cellular physiology as compared to classical analysis tools for kinome profiling.
Databáze: OpenAIRE