Spatial Distribution of the Mexican Daisy, Erigeron karvinskianus, in New Zealand under Climate Change
Autor: | Glenn Aguilar, Lauren Hannah, Dan Blanchon |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2019 |
Předmět: |
0106 biological sciences
Atmospheric Science Mexican daisy 010504 meteorology & atmospheric sciences biology Species distribution Climate change species distribution modeling biology.organism_classification Spatial distribution 010603 evolutionary biology 01 natural sciences Invasive species Erigeron karvinskianus invasive species Greenhouse gas Outlier Environmental science lcsh:Q Physical geography lcsh:Science Spatial analysis 0105 earth and related environmental sciences weed New Zealand |
Zdroj: | Climate, Vol 7, Iss 2, p 24 (2019) Climate Volume 7 Issue 2 |
ISSN: | 2225-1154 |
Popis: | The invasive species Erigeron karvinskianus or Mexican daisy is considered a significant weed that impacts native forest restoration efforts in New Zealand. Mapping the potential distribution of this species under current and future predicted climatic conditions provides managers with relevant information for developing appropriate management strategies. Using occurrences available from global and local databases, spatial distribution characteristics were analyzed using geostatistical tools in ArcMap to characterize current distribution. Species distribution modeling (SDM) using Maxent was conducted to determine the potential spatial distribution of E. karvinskianus worldwide and in New Zealand with projections into future climate conditions. Potential habitat suitability under future climatic conditions were simulated using greenhouse gas emission trajectories under the Representative Concentration Pathway (RCP) models RCP2.6, RCP4.5, RCP6.0 and RCP8.5 for years 2050 and 2070. Occurrence data were processed to minimize redundancy and spatial autocorrelation non-correlated environmental variables were determined to minimize bias and ensure robust models. Kernel density, hotspot and cluster analysis of outliers show that populated areas of Auckland, Wellington and Christchurch have significantly greater concentrations of E. karvinskianus. Species distribution modeling results find an increase in the expansion of range with higher RCP values, and plots of centroids show a southward movement of predicted range for the species. |
Databáze: | OpenAIRE |
Externí odkaz: |