Cospan construction of the graph category of Borisov and Manin
Autor: | Joachim Kock |
---|---|
Rok vydání: | 2021 |
Předmět: |
Generalised operads
General Mathematics Concrete category Category of groups Coequalizer 01 natural sciences Combinatorics 18D50 05C99 Mathematics::Algebraic Geometry 18D50 Mathematics::Category Theory 0103 physical sciences Mathematics - Quantum Algebra FOS: Mathematics Mathematics - Combinatorics Quantum Algebra (math.QA) Category Theory (math.CT) 0101 mathematics Discrete category Enriched category Mathematics::Symplectic Geometry Mathematics 010102 general mathematics Graphs generalised operads Mathematics - Category Theory Closed category 010307 mathematical physics Combinatorics (math.CO) Category of sets 05C99 2-category |
Zdroj: | Recercat. Dipósit de la Recerca de Catalunya instname Publ. Mat. 62, no. 2 (2018), 331-353 Recercat: Dipósit de la Recerca de Catalunya Varias* (Consorci de Biblioteques Universitáries de Catalunya, Centre de Serveis Científics i Acadèmics de Catalunya) Publicacions Matemàtiques; Vol. 62, Núm. 2 (2018); p. 331-353 Dipòsit Digital de Documents de la UAB Universitat Autònoma de Barcelona |
ISSN: | 0214-1493 |
Popis: | It is shown how the graph category of Borisov and Manin can be constructed from (a variant of) the graph category of Joyal and Kock, essentially by reversing the generic morphisms. More precisely, the morphisms in the Borisov-Manin category are exhibited as cospans of reduced covers and refinement morphisms. Comment: To Nils Baas, on his 70th birthday. 14pp |
Databáze: | OpenAIRE |
Externí odkaz: |