Autor: |
Ho-Kyung Lee, Ye-Jun Ban, Hyun-Jong Lee, Ji-Hyeon Kim, Sang-Joon Park |
Rok vydání: |
2023 |
Předmět: |
|
Zdroj: |
Materials; Volume 16; Issue 2; Pages: 762 |
ISSN: |
1996-1944 |
DOI: |
10.3390/ma16020762 |
Popis: |
In this paper, we introduce a new blue-emitting material, CuCrS2/ZnS QDs (CCS QDs). To obtain bright and stable photoluminescent probes, we prepared a core/shell structure; the synthesis was conducted in a one-pot system, using 1-dodecanethiol as a sulfur source and co-ligand. The CCS QDs exhibited a semi-spherical colloidal nanocrystalline shape with an average diameter of 9.0 nm and ZnS shell thickness of 1.6 nm. A maximum photoluminescence emission peak (PL max) was observed at 465 nm with an excitation wavelength of 400 nm and PLQY was 5% at an initial [Cr3+]/[Cu+] molar ratio of one in the core synthesis. With an off-stoichiometric modification for band gap engineering, the CCS QDs exhibited slightly blue-shifted PL emission spectra and PLQY was 10% with an increase in initial molar ratio of 2.0 (462 nm PL max). However, when the initial molar ratio exceeded two, the CCS QDs exhibited a lower photoluminescence quantum yield of 4.5% with 461 nm of PL max at the initial molar ratio of four due to the formation of non-emissive Cr2S3 nanoflakes. |
Databáze: |
OpenAIRE |
Externí odkaz: |
|
Nepřihlášeným uživatelům se plný text nezobrazuje |
K zobrazení výsledku je třeba se přihlásit.
|