ON THE SIMPLICITY OF HOMEOMORPHISM GROUPS OF A TILABLE LAMINATION

Autor: Samuel Petite, José Aliste-Prieto
Přispěvatelé: Universidad Andrés Bello [Santiago] (UNAB), Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), MathAmSud DYSTIL 12Math-02, Fondecyt Iniciacion 11121510 and Anillo DySyRf ACT-1103.
Jazyk: angličtina
Rok vydání: 2016
Předmět:
Zdroj: Monatshefte für Mathematik
Monatshefte für Mathematik, Springer Verlag, 2016, 181, pp.285-300. ⟨10.1007/s00605-016-0921-1⟩
ISSN: 0026-9255
1436-5081
DOI: 10.1007/s00605-016-0921-1⟩
Popis: We show that the identity component of the group of homeomorphisms that preserve all leaves of a R^d-tilable lamination is simple. Moreover, in the one dimensional case, we show that this group is uniformly perfect. We obtain a similar result for a dense subgroup of homeomorphisms.
14 p
Databáze: OpenAIRE