ON THE SIMPLICITY OF HOMEOMORPHISM GROUPS OF A TILABLE LAMINATION
Autor: | Samuel Petite, José Aliste-Prieto |
---|---|
Přispěvatelé: | Universidad Andrés Bello [Santiago] (UNAB), Laboratoire Amiénois de Mathématique Fondamentale et Appliquée (LAMFA), Université de Picardie Jules Verne (UPJV)-Centre National de la Recherche Scientifique (CNRS), MathAmSud DYSTIL 12Math-02, Fondecyt Iniciacion 11121510 and Anillo DySyRf ACT-1103. |
Jazyk: | angličtina |
Rok vydání: | 2016 |
Předmět: |
Mathematics::Dynamical Systems
General Mathematics media_common.quotation_subject [MATH.MATH-DS]Mathematics [math]/Dynamical Systems [math.DS] Structure (category theory) Mathematics::General Topology Dynamical Systems (math.DS) Lamination (topology) 01 natural sciences Combinatorics Simple (abstract algebra) 0103 physical sciences FOS: Mathematics Identity component Simplicity tilable lamination Mathematics - Dynamical Systems 0101 mathematics Mathematics media_common Leaf preserving homeomorphisms Group (mathematics) 010102 general mathematics Mathematics::Geometric Topology Homeomorphism Simple group 010307 mathematical physics 20E32 57S05 37B50 37A20 |
Zdroj: | Monatshefte für Mathematik Monatshefte für Mathematik, Springer Verlag, 2016, 181, pp.285-300. ⟨10.1007/s00605-016-0921-1⟩ |
ISSN: | 0026-9255 1436-5081 |
DOI: | 10.1007/s00605-016-0921-1⟩ |
Popis: | We show that the identity component of the group of homeomorphisms that preserve all leaves of a R^d-tilable lamination is simple. Moreover, in the one dimensional case, we show that this group is uniformly perfect. We obtain a similar result for a dense subgroup of homeomorphisms. 14 p |
Databáze: | OpenAIRE |
Externí odkaz: |