Computing multiple roots of polynomials in stochastic arithmetic with Newton method and approximate GCD

Autor: Graillat, Stef, Jézéquel, Fabienne, Queiros Martins, Enzo, Spyropoulos, Maxime
Přispěvatelé: Performance et Qualité des Algorithmes Numériques (PEQUAN), LIP6, Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS)-Sorbonne Université (SU)-Centre National de la Recherche Scientifique (CNRS), Université paris 2 Panthéon-Assas, JEZEQUEL, Fabienne, Plateforme d'analyse pour l'arithmétique flottante - - INTERFLOP2020 - ANR-20-CE46-0009 - AAPG2020 - VALID, ANR-20-CE46-0009,INTERFLOP,Plateforme d'analyse pour l'arithmétique flottante(2020)
Jazyk: angličtina
Rok vydání: 2021
Předmět:
Popis: In this article, we propose new methods to compute multiple roots of polynomials in floating-point arithmetic. We rely on stochastic arithmetic that makes it possible to deal with rounding errors. We develop the concept of stochastic GCD that we use to deflate a polynomial in order to obtain a polynomial with single roots. We can then apply Newton method to get fast and accurate approximations of the roots. Numerical experiments show the effectiveness and efficiency of our methods.
Databáze: OpenAIRE