Gradient Einstein-type structures immersed into a Riemannian warped product
Autor: | Elismar Batista, Levi Adriano, Willian Tokura |
---|---|
Rok vydání: | 2022 |
Předmět: | |
Zdroj: | Journal of Geometry and Physics. 176:104510 |
ISSN: | 0393-0440 |
DOI: | 10.1016/j.geomphys.2022.104510 |
Popis: | In this paper, we study gradient Einstein-type structure immersed into a Riemannian warped product manifold. We obtain some triviality results for the potential function and smooth map $u$. We investigate conditions for a gradient Einstein-type structure to be minimal, totally umbilical, or totally geodesic immersed into a warped product $I\times_f M^n$. Furthermore, we characterize rotational hypersurface into $\mathbb{R}\times_f\mathbb{R}^n$ has a gradient Einstein-type structure. arXiv admin note: text overlap with arXiv:2010.03995 |
Databáze: | OpenAIRE |
Externí odkaz: |