Popis: |
La generación eléctrica híbrida combina las ventajas de las celdas de combustible con sistemas de generación difíciles de predecir, como los fotovoltaicos y eólicos. El principal objetivo en este tipo de sistemas híbridos es minimizar el consumo de hidrógeno reduciendo costos e incrementando la autonomía del sistema. Este articulo propone un algoritmo de optimización, conocido como algoritmo de aprendizaje incremental basado en población, el cual tienen como objetivo maximizar la potencia producida por un generador fotovoltaico. Esta maximización reduce el consumo de hidrógeno combustible del sistema basado en hidrógeno. Adicionalmente, la velocidad de convergencia del algoritmo permite la computación en tiempo real de la mejor configuración para el sistema fotovoltaico, permitiendo una optimización dinámica del consumo de hidrógeno de la celda de combustible. Finalmente, se presenta una validación experimental del sistema considerando 6 paneles fotovoltaicos y una celda de combustible NEXA de 1.2 KW. Esta validación, demuestra la efectividad del algoritmo propuesto para la reducción del consumo de hidrógeno en este tipo de sistemas híbridos. |