Neonatal de-afferentation of capsaicin-sensitive sensory nerves increases in vivo insulin sensitivity in conscious adult rats

Autor: Ralph A. DeFronzo, S. J. Koopmans, Brendan Leighton
Rok vydání: 1998
Předmět:
Zdroj: Diabetologia. 41:813-820
ISSN: 1432-0428
0012-186X
DOI: 10.1007/s001250050992
Popis: Sensory neuropeptides, released from the peripheral nervous system, might modulate glucose homeostasis by antagonizing insulin action. The effects of de-afferentation of functional small diameter unmyelinated C-fibres (sensory nerves) on in vivo insulin-mediated intracellular glucose metabolism were investigated by using euglycaemic insulin (6 and 18 mU/kg x min) clamps with [3-(3)H]-glucose infusion in 24 adult rats, treated neonatally with either capsaicin (CAP) (50 mg/kg) or vehicle (CON). Following the clamp, skeletal muscle groups, liver and adipose tissue were freeze-clamped. At plasma insulin levels of approximately 90 mU/l, CAP-rats showed a 21% increase in whole body glucose uptake compared with CON (24.4 +/- 1.6 vs 20.1 +/- 0.8 mg/kg min, p < 0.02), which was paralleled by a 20% increase in whole body glycolysis (12.6 +/- 0.8 vs 10.5 +/- 0.5 mg/ kg.min p < 0.05) (concentration of 3H2O in plasma). Whole body skeletal muscle glycogenesis was increased by 80% in CAP-rats (5.7 +/- 0.7 vs 3.1 +/- 0.7 mg/kg x min, p < 0.05) with increased muscle glycogen synthase activity. Whole body (muscle, liver and adipose tissue combined) de novo lipogenesis also was increased in CAP-rats compared with CON (0.69 +/- 0.10 vs 0.44 +/- 0.06 mg/kg x min, p < 0.05) (incorporation of [3-(3)H]-glucose counts into glycogen or fat). Hepatic glucose production was lower in CAP-rats compared with CON (0.6 +/- 0.6 vs 2.1 +/- 0.7 mg/kg x min, p < 0.05). Plasma glucagon, corticosterone, epinephrine and norepinephrine levels were reduced in CAP-rats: 43 +/- 2 compared with 70 +/- 6 pg/ml, 855 +/- 55 compared with 1131 +/- 138 nmol/l, 513 +/- 136 compared with 1048 +/- 164 pmol/l and 928 +/- 142 compared with 1472 +/- 331 pmol/l, respectively, p < 0.05. At plasma insulin levels of approximately 400 mU/l, CAP-rats showed no differences in peripheral and hepatic insulin action compared with CON. We conclude that the removal of endogenous sensory neuropeptides, by de-afferentation of capsaicin-sensitive sensory nerves, increases in vivo insulin sensitivity, but not responsiveness: 1) primarily through an increased sensitivity of skeletal muscle glycogen synthesis to insulin; 2) through a reduction in the levels of counter-regulatory hormones, thereby creating a milieu which favours overall in vivo insulin sensitivity with respect to glucose uptake, glucose production, glycolysis, glycogenesis and lipogenesis.
Databáze: OpenAIRE