Precise asymptotics for the linear processes generated by associated random variables in Hilbert spaces
Autor: | Ya-Juan Dong, Jie Li, Ke-Ang Fu, Hui Zhou |
---|---|
Jazyk: | angličtina |
Předmět: |
Discrete mathematics
Sequence Generic property Hilbert space Convergence rates Bounded operator Association Computational Mathematics symbols.namesake Computational Theory and Mathematics Modelling and Simulation Modeling and Simulation Bounded function symbols Function composition Limit (mathematics) Random variable Linear processes Mathematics |
Zdroj: | Computers & Mathematics with Applications. (6):1937-1943 |
ISSN: | 0898-1221 |
DOI: | 10.1016/j.camwa.2012.03.046 |
Popis: | Let {@e"k,k@?Z} be a strictly stationary associated sequence of random variables taking values in a real separable Hilbert space, and {a"k;k@?Z} be a sequence of bounded linear operators. For a linear process X"k=@?"i"="-"~^~a"i(@e"k"-"i), the precise probability and moment convergence rates of @?"i"="1^nX"i in some limit theorems are discussed. |
Databáze: | OpenAIRE |
Externí odkaz: |