Genomic organization, sequence analysis and expression of all five genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato
Autor: | Wilhelm Gruissem, Eran Pichersky, Thianda Manzara, Anthony R. Cashmore, Mamoru Sugita |
---|---|
Rok vydání: | 1987 |
Předmět: |
Genetics
Base Sequence Transcription Genetic Macromolecular Substances Sequence analysis Ribulose-Bisphosphate Carboxylase Molecular Sequence Data Intron Nucleic Acid Hybridization hemic and immune systems Locus (genetics) Plants Biology Molecular biology Exon Genes hemic and lymphatic diseases Gene family Coding region Amino Acid Sequence Molecular Biology Gene circulatory and respiratory physiology Genomic organization |
Zdroj: | Molecular and General Genetics MGG. 209:247-256 |
ISSN: | 1432-1874 0026-8925 |
DOI: | 10.1007/bf00329650 |
Popis: | We have cloned and sequenced all five members of the gene family for the small subunit (rbcS) of ribulose-1,5-bisphosphate carboxylase/oxygenase from tomato, Lycopersicon esculentum cv. VFNT LA 1221 cherry line. Two of the five genes, designated Rbcs-1 and Rbcs-2, are present as single genes at individual loci. Three genes, designated Rbcs-3A, Rbcs-3B and Rbcs-3C, are organized in a tandem array within 10 kb at a third independent locus. The Rbcs-2 gene contains three introns; all the other members of the tomato gene family contain two introns. The coding sequence of Rbcs-1 differs by 14.0% from that of Rbcs-2 and by 13.3% from that of Rbcs-3 genes. Rbcs-2 shows 10.4% divergence from Rbcs-3. The exon and intron sequences of Rbcs-3A are identical to those of Rbcs-3C, and differ by 1.9% from those of Rbcs-3B. Nucleotide sequence analysis suggests that the five rbcS genes encode four different precursors, and three different mature polypeptides. S1 nuclease mapping of the 5' end of rbcS mRNAs revealed that the mRNA leader sequences vary in length from 8 to 75 nucleotides. Northern analysis using gene-specific oligonucleotide probes from the 3' non-coding region of each gene reveals a four to five-fold difference among the five genes in maximal steady-state mRNA levels in leaves. |
Databáze: | OpenAIRE |
Externí odkaz: |