4-Hydroxytamoxifen Trans-Represses Nuclear Factor-κB Activity in Human Osteoblastic U2-OS Cells through Estrogen Receptor (ER)α, and Not through ERβ*
Autor: | Paul T. van der Saag, Richard H. M. M. Schreurs, Christina E. van den Brink, Bart van der Burg, Sacha Wissink, Jan-Åke Gustafsson, Monique E. Quaedackers |
---|---|
Rok vydání: | 2001 |
Předmět: |
medicine.medical_specialty
medicine.drug_class Gene Expression Estrogen receptor Biology Transfection Endocrinology Genes Reporter Internal medicine Tumor Cells Cultured medicine Estrogen Receptor beta Humans RNA Messenger Receptor Psychological repression Estrogen receptor beta Osteoblasts Tumor Necrosis Factor-alpha Estrogen Antagonists Estrogen Receptor alpha NF-kappa B Stereoisomerism DNA Protein Structure Tertiary Tamoxifen Receptors Estrogen Nuclear receptor Estrogen I-kappa B Proteins Estrogen-related receptor gamma Estrogen receptor alpha |
Zdroj: | Endocrinology. 142:1156-1166 |
ISSN: | 1945-7170 0013-7227 |
DOI: | 10.1210/endo.142.3.8003 |
Popis: | Estrogens are important mediators of bone homeostasis, and postmenopausal estrogen replacement therapy is extensively used to prevent osteoporosis. The biological effects of estrogen are mediated by receptors belonging to the superfamily of steroid/thyroid nuclear receptors, estrogen receptor (ER)alpha and ER beta. ER alpha, not only trans-activates target genes in a hormone-specific fashion, but it can also neutralize other transcriptional activators, such as nuclear factor (NF)-kappa B, causing repression of their target genes. A major mechanism by which estrogens prevent osteoporosis seems to be repression of transcription of NF-kappa B target genes, such as the osteoclast-activating cytokines interleukin-6 and interleukin-1. To study the capacity of both ERs in repression of NF-kappa B signaling in bone cells, we first carried out transient transfections with ER alpha or ER beta of the human osteoblastic U2-OS cell line, in which endogenous NF-kappa B was stimulated by tumor necrosis factor alpha. Repression by ER alpha was already observed without 17 beta-estradiol, whereas addition of the ligand increased repression to 90%. ER beta, however, was able to repress NF-kappa B activity only in the presence of ligand. Because it is known that some antiestrogens can also display tissue-specific agonistic properties, 4-hydroxytamoxifen was tested for its capacity in repressing NF-kappa B activity and was found to be active (albeit less efficient than 17 beta-estradiol) and, interestingly, only with ER alpha. The pure antagonist ICI 164,384 was incapable of repressing through any ER subtypes. Deletion analysis and the use of receptor ER alpha/ER beta-chimeras showed that the A/B domain, containing activation function-1, is essential for this suppressive action. Next, we developed stable transfectants of the human osteoblastic U2-OS cell line containing ER alpha or ER beta in combination with an NF-kappa B luciferase reporter construct. In these cell lines, repression of NF-kappa B activity was only mediated through ER alpha and not through ER beta. These findings offer new insights into the specific role of both ER subtypes in bone homeostasis and could eventually help in developing more specific medical intervention strategies for osteoporosis. |
Databáze: | OpenAIRE |
Externí odkaz: |