Physiologically-Based Pharmacokinetic-Led Guidance for Patients With Cystic Fibrosis Taking Elexacaftor-Tezacaftor-Ivacaftor With Nirmatrelvir-Ritonavir for the Treatment of COVID-19

Autor: Eunjin Hong, Lisa M. Almond, Peter S. Chung, Adupa P. Rao, Paul M. Beringer
Rok vydání: 2022
Předmět:
Zdroj: Clinical pharmacology and therapeutics. 111(6)
ISSN: 1532-6535
Popis: Cystic fibrosis transmembrane conductance regulator (CFTR) modulating therapies, including elexacaftor-tezacaftor-ivacaftor, are primarily eliminated through cytochrome P450 (CYP) 3A-mediated metabolism. This creates a therapeutic challenge to the treatment of coronavirus disease 2019 (COVID-19) with nirmatrelvir-ritonavir in people with cystic fibrosis (CF) due to the potential for significant drug-drug interactions (DDIs). However, the population with CF is more at risk of serious illness following COVID-19 infection and hence it is important to manage the DDI risk and provide treatment options. CYP3A-mediated DDI of elexacaftor-tezacaftor-ivacaftor was evaluated using a physiologically-based pharmacokinetic modeling approach. Modeling was performed incorporating physiological information and drug-dependent parameters of elexacaftor-tezacaftor-ivacaftor to predict the effect of ritonavir (the CYP3A inhibiting component of the combination) on the pharmacokinetics of elexacaftor-tezacaftor-ivacaftor. The elexacaftor-tezacaftor-ivacaftor models were verified using independent clinical pharmacokinetic and DDI data of elexacaftor-tezacaftor-ivacaftor with a range of CYP3A modulators. When ritonavir was administered on Days 1 through 5, the predicted area under the curve (AUC) ratio of ivacaftor (the most sensitive CYP3A substrate) on Day 6 was 9.31, indicating that its metabolism was strongly inhibited. Based on the predicted DDI, the dose of elexacaftor-tezacaftor-ivacaftor should be reduced when coadministered with nirmatrelvir-ritonavir to elexacaftor 200 mg-tezacaftor 100 mg-ivacaftor 150 mg on Days 1 and 5, with delayed resumption of full-dose elexacaftor-tezacaftor-ivacaftor on Day 9, considering the residual inhibitory effect of ritonavir as a mechanism-based inhibitor. The simulation predicts a regimen of elexacaftor-tezacaftor-ivacaftor administered concomitantly with nirmatrelvir-ritonavir in people with CF that will likely decrease the impact of the drug interaction.
Databáze: OpenAIRE