Interfacial piezoelectric polarization locking in printable Ti3C2Tx MXene-fluoropolymer composites
Autor: | Greg W. Dicinoski, Ken Aldren S. Usman, Peter C. Sherrell, Joselito M. Razal, Joseph G. Shapter, Nick A. Shepelin, Eirini Goudeli, Jizhen Zhang, Emmanuel N. Skountzos, Beenish Imtiaz, Vanessa C. Lussini, Amanda V. Ellis |
---|---|
Rok vydání: | 2021 |
Předmět: |
Materials science
Science FOS: Physical sciences General Physics and Astronomy 02 engineering and technology Condensed Matter - Soft Condensed Matter 010402 general chemistry 01 natural sciences General Biochemistry Genetics and Molecular Biology chemistry.chemical_compound Physics - Chemical Physics Composite material Polarization (electrochemistry) Mechanical energy Chemical Physics (physics.chem-ph) Condensed Matter - Materials Science Multidisciplinary Poling Materials Science (cond-mat.mtrl-sci) General Chemistry 021001 nanoscience & nanotechnology Electrostatics Piezoelectricity 0104 chemical sciences Piezoresponse force microscopy chemistry Soft Condensed Matter (cond-mat.soft) Fluoropolymer 0210 nano-technology Energy harvesting |
Zdroj: | Nature Communications, Vol 12, Iss 1, Pp 1-11 (2021) |
ISSN: | 2041-1723 |
DOI: | 10.1038/s41467-021-23341-3 |
Popis: | Piezoelectric fluoropolymers convert mechanical energy to electricity and are ideal for sustainably providing power to electronic devices. To convert mechanical energy, a net polarization must be induced in the fluoropolymer, which is currently achieved via an energy intensive electrical poling process. Eliminating this process will enable the low-energy production of efficient energy harvesters. Here, by combining molecular dynamics simulations, piezoresponse force microscopy, and electrodynamic measurements, we reveal a hitherto unseen polarization locking phenomena of poly(vinylidene fluoride-$\mathit{co}$-trifluoroethylene) (PVDF-TrFE) perpendicular to the basal plane of two-dimensional (2D) Ti$_{3}$C$_{2}$T$_{\mathit{x}}$ MXene nanosheets. This polarization locking, driven by strong electrostatic interactions enabled exceptional energy harvesting performance, with a measured piezoelectric charge coefficient, $\mathit{d_{33}}$, of -52.0 picocoulombs per newton, significantly higher than electrically poled PVDF-TrFE (approximately -38 picocoulombs per newton). This study provides a new fundamental and low energy input mechanism of poling fluoropolymers, which enables new levels of performance in electromechanical technologies. Comment: 29 pages, 5 figures, 52 references |
Databáze: | OpenAIRE |
Externí odkaz: |