Fractal Weyl law for open quantum chaotic maps
Autor: | Johannes Sjöstrand, Stéphane Nonnenmacher, Maciej Zworski |
---|---|
Přispěvatelé: | Institut de Physique Théorique - UMR CNRS 3681 (IPHT), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Paris-Saclay-Centre National de la Recherche Scientifique (CNRS), Institut de Mathématiques de Bourgogne [Dijon] (IMB), Centre National de la Recherche Scientifique (CNRS)-Université de Franche-Comté (UFC), Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université Bourgogne Franche-Comté [COMUE] (UBFC)-Université de Bourgogne (UB), Department of Mathematics [Berkeley], University of California [Berkeley], University of California-University of California, National Science Fundation - DMS-0635607, ANR-09-JCJC-0099,METHCHAOS,Méthodes spectrales en chaos classique et quantique(2009), Université de Bourgogne (UB)-Centre National de la Recherche Scientifique (CNRS), University of California [Berkeley] (UC Berkeley), University of California (UC)-University of California (UC), Institut de Physique Théorique - UMR CNRS 3681 ( IPHT ), Commissariat à l'énergie atomique et aux énergies alternatives ( CEA ) -Université Paris-Saclay-Centre National de la Recherche Scientifique ( CNRS ), Institut de Mathématiques de Bourgogne [Dijon] ( IMB ), Université de Bourgogne ( UB ) -Centre National de la Recherche Scientifique ( CNRS ), Mathematics Department, UC Berkeley ( UC BERKELEY MATHS ), ANR-09-JCJC-0099-01,ANR-09-JCJC-0099-01 |
Rok vydání: | 2014 |
Předmět: |
[ NLIN.NLIN-CD ] Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD]
[PHYS.MPHY]Physics [physics]/Mathematical Physics [math-ph] FOS: Physical sciences Semiclassical physics Dynamical Systems (math.DS) 35B34 37D20 81Q50 81U05 Upper and lower bounds MSC: 35B34 37D20 81Q50 81U05 Fractal Weyl law Quantization (physics) Mathematics - Analysis of PDEs [ MATH.MATH-AP ] Mathematics [math]/Analysis of PDEs [math.AP] Mathematics (miscellaneous) Fractal [MATH.MATH-MP]Mathematics [math]/Mathematical Physics [math-ph] FOS: Mathematics [MATH.MATH-AP]Mathematics [math]/Analysis of PDEs [math.AP] Mathematics - Dynamical Systems Quantum Mathematical physics Mathematics Scattering [ MATH.MATH-MP ] Mathematics [math]/Mathematical Physics [math-ph] Nonlinear Sciences - Chaotic Dynamics Weyl law Resonances Quantum chaotic scattering [NLIN.NLIN-CD]Nonlinear Sciences [physics]/Chaotic Dynamics [nlin.CD] [ PHYS.MPHY ] Physics [physics]/Mathematical Physics [math-ph] Chaotic Dynamics (nlin.CD) Statistics Probability and Uncertainty Open quantum map Complex plane Analysis of PDEs (math.AP) |
Zdroj: | Annals of Mathematics Annals of Mathematics, Princeton University, Department of Mathematics, 2014, 179 (1), pp.179-251. ⟨10.4007/annals.2014.179.1.3⟩ Annals of Mathematics, 2014, 179 (1), pp.179-251. ⟨10.4007/annals.2014.179.1.3⟩ Annals of Mathematics, Princeton University, Department of Mathematics, 2014, 179 (1), pp.179-251. 〈10.4007/annals.2014.179.1.3〉 |
ISSN: | 0003-486X |
DOI: | 10.4007/annals.2014.179.1.3 |
Popis: | We study the semiclassical quantization of Poincar\'e maps arising in scattering problems with fractal hyperbolic trapped sets. The main application is the proof of a fractal Weyl upper bound for the number of resonances/scattering poles in small domains near the real axis. This result encompasses the case of several convex (hard) obstacles satisfying a no-eclipse condition. Comment: 69 pages, 7 figures |
Databáze: | OpenAIRE |
Externí odkaz: |