Space-Borne Electron Accelerator Design

Autor: S. A. Storms, John W. Lewellen, Douglas E. Patrick, Dinh C. Nguyen, Bruce E. Carlsten, Michael A. Holloway, Gregory E. Dale, Cynthia Eileen Buechler
Jazyk: angličtina
Rok vydání: 2019
Předmět:
Zdroj: Frontiers in Astronomy and Space Sciences, Vol 6 (2019)
ISSN: 2296-987X
DOI: 10.3389/fspas.2019.00035
Popis: Renewed interest in active experiments with relativistic particle beams in space has led to the development of solid-state radio-frequency (RF) linear accelerators (linac) that can deliver MeV electron beams but operate with low-voltage DC power supplies. The solid-state RF amplifiers used to drive the accelerator are known as high-electron mobility transistors (HEMTs), and at C-band (5–6 GHz) are capable of generating up to 500 watts of RF power at 10% duty factor in a small package, i.e., the size of a postage stamp. In operation, the HEMTs are powered with 50 V DC as their bias voltage; they thus can tap into the spacecraft batteries or electrical bus as the primary power source. In this paper we describe the initial testing of a compact space-borne RF accelerator consisting of individual C-band cavities, each independently powered by a gallium nitride (GaN) HEMT. We show preliminary test results that demonstrate the beam acceleration in a single C-band cavity powered by a single HEMT operating at 10% duty factor. An example of active beam experiments in space that could benefit from the HEMT-powered accelerators is the proposed Magnetosphere-Ionosphere Connection (CONNEX) experiment (Dors et al., 2017).
Databáze: OpenAIRE