Experimental Investigations of Micro-Meso Damage Evolution for a Co/WC-Type Tool Material with Application of Digital Image Correlation and Machine Learning
Autor: | Yanling, Schneider, Reiner, Zielke, Chensheng, Xu, Muhammad, Tayyab, Ulrich, Weber, Siegfried, Schmauder, Wolfgang, Tillmann |
---|---|
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
Technology
Microscopy QC120-168.85 micro-computed tomography (CT) QH201-278.5 damage evolution local strain map Engineering (General). Civil engineering (General) Article TK1-9971 micro-computed tomography (μCT) machine learning Descriptive and experimental mechanics digital image correlation Electrical engineering. Electronics. Nuclear engineering TA1-2040 |
Zdroj: | Materials, Vol 14, Iss 3562, p 3562 (2021) Materials Volume 14 Issue 13 |
ISSN: | 1996-1944 |
Popis: | Commercial Co/WC/diamond composites are hard metals and very useful as a kind of tool material, for which both ductile and quasi-brittle behaviors are possible. This work experimentally investigates their damage evolution dependence on microstructural features. The current study investigates a different type of Co/WC-type tool material which contains 90vol.% Co instead of the usual < 50vol.%. The studied composites showed quasi-brittle behavior. An in-house-designed testing machine realizes the in-situ micro-computed tomography (CT) under loading. This advanced equipment can record local damage in 3D during the loading. The digital image correlation technique delivers local displacement/strain maps in 2D and 3D based on tomographic images. As shown by nanoindentation tests, matrix regions near diamond particles do not possess higher hardness values than other regions. Since local positions with high stress are often coincident with those with high strain, diamonds, which aim to achieve composites with high hardnesses, contribute to the strength less than the WC phase. Samples that illustrated quasi-brittle behavior possess about 100–130 MPa higher tensile strengths than those with ductile behavior. Voids and their connections (forming mini/small cracks) dominant the detected damages, which means void initiation, growth, and coalescence should be the damage mechanisms. The void appears in the form of debonding. Still, it is uncovered that debonding between Co-diamonds plays a major role in provoking fatal fractures for composites with quasi-brittle behavior. An optimized microstructure should avoid diamond clusters and their local volume concentrations. To improve the time efficiency and the object-identification accuracy in CT image segmentation, machine learning (ML), U-Net in the convolutional neural network (deep learning), is applied. This method takes only about 40 min to segment more than 700 images, i.e., a great improvement of the time efficiency compared to the manual work and the accuracy maintained. The results mentioned above demonstrate knowledge about the strengthening and damage mechanisms for Co/WC/diamond composites with > 50vol.% Co. The material properties for such tool materials (> 50vol.% Co) is rarely published until now. Efforts made in the ML part contribute to the realization of autonomous processing procedures in big-data-driven science applied in materials science. |
Databáze: | OpenAIRE |
Externí odkaz: |