A flexible class of non-separable cross-covariance functions for multivariate space-time data

Autor: Emilio Porcu, Marc Bourotte, Denis Allard
Přispěvatelé: Biostatistique et Processus Spatiaux (BIOSP), Institut National de la Recherche Agronomique (INRA), Departamento de Matemática, Universidad Tecnica Federico Santa Maria [Valparaiso] (UTFSM), metaprogramme Adaptation of Agriculture and Forests to Climate Change (AAFCC) /Proyecto Fondecyt from Chilean Ministry of Education 1130647, Biostatistique et Processus Spatiaux (BioSP)
Jazyk: angličtina
Rok vydání: 2016
Předmět:
FOS: Computer and information sciences
Statistics and Probability
Spatio-temporal processes
Multivariate statistics
Gaussian
géostatistique
0208 environmental biotechnology
Matern covariance
Separability
02 engineering and technology
Management
Monitoring
Policy and Law

processus spatiotemporel
01 natural sciences
Composite likelihood
fonction de covariance
Methodology (stat.ME)
010104 statistics & probability
symbols.namesake
[MATH.MATH-ST]Mathematics [math]/Statistics [math.ST]
Applied mathematics
Statistics::Methodology
geostatistics
0101 mathematics
Computers in Earth Sciences
Statistics - Methodology
Mathematics
probabilité composite
Random field
Multivariate Gaussian processes
Univariate
Cauchy distribution
Covariance
020801 environmental engineering
Positive definiteness
Spatio-temporal geostatistics
symbols
gaussian process
Cross-covariance
processus gaussien
Zdroj: Spatial Statistics
Spatial Statistics, Elsevier, 2016, 18, pp.125-146. ⟨10.1016/j.spasta.2016.02.004⟩
ISSN: 2211-6753
DOI: 10.1016/j.spasta.2016.02.004⟩
Popis: Multivariate space–time data are increasingly available in various scientific disciplines. When analyzing these data, one of the key issues is to describe the multivariate space–time dependences. Under the Gaussian framework, one needs to propose relevant models for multivariate space–time covariance functions, i.e. matrix-valued mappings with the additional requirement of non-negative definiteness. We propose a flexible parametric class of cross-covariance functions for multivariate space–time Gaussian random fields. Space–time components belong to the (univariate) Gneiting class of space–time covariance functions, with Matern or Cauchy covariance functions in the spatial margins. The smoothness and scale parameters can be different for each variable. We provide sufficient conditions for positive definiteness. A simulation study shows that the parameters of this model can be efficiently estimated using weighted pairwise likelihood, which belongs to the class of composite likelihood methods. We then illustrate the model on a French dataset of weather variables.
Databáze: OpenAIRE