On perturbations of linear m-accretive operators on reflexive Banach spaces
Autor: | Klaus-J. Engel |
---|---|
Rok vydání: | 1995 |
Předmět: |
Unbounded operator
Discrete mathematics Approximation property Astrophysics::High Energy Astrophysical Phenomena General Mathematics Eberlein–Šmulian theorem Uniformly convex space Astrophysics::Cosmology and Extragalactic Astrophysics Reflexive operator algebra Operator theory Pseudo-monotone operator Astrophysics::Solar and Stellar Astrophysics Astrophysics::Earth and Planetary Astrophysics Reflexive space Astrophysics::Galaxy Astrophysics Mathematics |
Zdroj: | Monatshefte f�r Mathematik. 119:259-265 |
ISSN: | 1436-5081 0026-9255 |
DOI: | 10.1007/bf01293586 |
Popis: | In this note we prove some results on the m-accretivity of sums and products of linear operators. In particular we obtain the following theorem: LetA, B be two m-accretive operators on a reflexive Banach space. IfA is invertible and (A′)−1 B′ is accretive thenBA −1 andA+B are m-accretive. |
Databáze: | OpenAIRE |
Externí odkaz: |