Estimation of local treatment effects under the binary instrumental variable model

Autor: Thomas S. Richardson, James M. Robins, Yuexia Zhang, Linbo Wang
Rok vydání: 2021
Předmět:
Zdroj: Biometrika. 108:881-894
ISSN: 1464-3510
0006-3444
DOI: 10.1093/biomet/asab003
Popis: Summary Instrumental variables are widely used to deal with unmeasured confounding in observational studies and imperfect randomized controlled trials. In these studies, researchers often target the so-called local average treatment effect as it is identifiable under mild conditions. In this paper we consider estimation of the local average treatment effect under the binary instrumental variable model. We discuss the challenges of causal estimation with a binary outcome and show that, surprisingly, it can be more difficult than in the case with a continuous outcome. We propose novel modelling and estimation procedures that improve upon existing proposals in terms of model congeniality, interpretability, robustness and efficiency. Our approach is illustrated via simulation studies and a real data analysis.
Databáze: OpenAIRE