Courant-sharp eigenvalues of a two-dimensional torus

Autor: Corentin Léna
Přispěvatelé: Laboratoire de Mathématiques d'Orsay (LM-Orsay), Université Paris-Sud - Paris 11 (UP11)-Centre National de la Recherche Scientifique (CNRS), ANR-12-BS01-0007,OPTIFORM,Optimisation de Formes(2012), European Project: 339958,EC:FP7:ERC,ERC-2013-ADG,COMPAT(2014), Centre National de la Recherche Scientifique (CNRS)-Université Paris-Sud - Paris 11 (UP11)
Rok vydání: 2015
Předmět:
Zdroj: Comptes Rendus. Mathématique
Comptes Rendus. Mathématique, 2015, 353 (6), pp.535-539. ⟨10.1016/j.crma.2015.03.014⟩
Comptes Rendus. Mathématique, Académie des sciences (Paris), 2015, 353 (6), pp.535-539. ⟨10.1016/j.crma.2015.03.014⟩
ISSN: 1631-073X
1778-3569
DOI: 10.1016/j.crma.2015.03.014
Popis: Version abrégée pour publication - Shortened published version; International audience; In this paper, we determine, in the case of the Laplacian on the flat two-dimensional torus (R/Z) 2 , all the eigenvalues having an eigenfunction which satisfies Courant's theorem with equality (Courant-sharp situation). Following the strategy o A. Pleijel (1956), the proof is a combination of a lower bound a la Weyl) of the counting function, with an explicit remainder term, and of a Faber–Krahn inequality for domains on the torus (deduced as in Bérard-Meyer from an isoperimetric inequality), with an explicit upper bound on the area.
Databáze: OpenAIRE