Supersymmetric extension of qKZ-Ruijsenaars correspondence
Autor: | Anton Zabrodin, A. Grekov, A. V. Zotov |
---|---|
Rok vydání: | 2019 |
Předmět: |
High Energy Physics - Theory
Nuclear and High Energy Physics Angular momentum FOS: Physical sciences System of linear equations Computer Science::Digital Libraries 01 natural sciences 010305 fluids & plasmas Quantization (physics) Mathematics::Quantum Algebra 0103 physical sciences lcsh:Nuclear and particle physics. Atomic energy. Radioactivity Quantum field theory 010306 general physics Quantum Mathematical Physics Mathematical physics Physics Nonlinear Sciences - Exactly Solvable and Integrable Systems Mathematical Physics (math-ph) Supersymmetry Mathematical Operators Nonlinear Sciences::Exactly Solvable and Integrable Systems High Energy Physics - Theory (hep-th) lcsh:QC770-798 Exactly Solvable and Integrable Systems (nlin.SI) Supergroup |
Zdroj: | Nuclear Physics B, Vol 939, Iss, Pp 174-190 (2019) Nuclear Physics |
ISSN: | 0550-3213 |
DOI: | 10.1016/j.nuclphysb.2018.12.014 |
Popis: | We describe the correspondence of the Matsuo-Cherednik type between the quantum $n$-body Ruijsenaars-Schneider model and the quantum Knizhnik-Zamolodchikov equations related to supergroup $GL(N|M)$. The spectrum of the Ruijsenaars-Schneider Hamiltonians is shown to be independent of the ${\mathbb Z}_2$-grading for a fixed value of $N+M$, so that $N+M+1$ different qKZ systems of equations lead to the same $n$-body quantum problem. The obtained results can be viewed as a quantization of the previously described quantum-classical correspondence between the classical $n$-body Ruijsenaars-Schneider model and the supersymmetric $GL(N|M)$ quantum spin chains on $n$ sites. Comment: 17 pages |
Databáze: | OpenAIRE |
Externí odkaz: |