Efficiency of light harvesting in a photosynthetic bacterium adapted to different levels of light
Autor: | Kõu Timpmann, Arvi Freiberg, Manoop Chenchiliyan, John A. Timney, C. Neil Hunter, Erko Jalviste |
---|---|
Rok vydání: | 2014 |
Předmět: |
Photosynthetic reaction centre
Light Population Biophysics Optical spectroscopy Light-Harvesting Protein Complexes Trapping Rhodobacter sphaeroides Photochemistry Photosynthesis Biochemistry Fluorescence Exciton education Picosecond excitation energy transfer education.field_of_study Physics::Biological Physics biology Chemistry Photosynthetic unit Cell Biology biology.organism_classification Adaptation Physiological Light harvesting Wavelength Kinetics Chemical physics Picosecond Quantum efficiency |
Zdroj: | Biochimica et biophysica acta. 1837(10) |
ISSN: | 0006-3002 |
Popis: | In this study, we use the photosynthetic purple bacterium Rhodobacter sphaeroides to find out how the acclimation of photosynthetic apparatus to growth conditions influences the rates of energy migration toward the reaction center traps and the efficiency of charge separation at the reaction centers. To answer these questions we measured the spectral and picosecond kinetic fluorescence responses as a function of excitation intensity in membranes prepared from cells grown under different illumination conditions. A kinetic model analysis yielded the microscopic rate constants that characterize the energy transfer and trapping inside the photosynthetic unit as well as the dependence of exciton trapping efficiency on the ratio of the peripheral LH2 and core LH1 antenna complexes, and on the wavelength of the excitation light. A high quantum efficiency of trapping over 80% was observed in most cases, which decreased toward shorter excitation wavelengths within the near infrared absorption band. At a fixed excitation wavelength the efficiency declines with the LH2/LH1 ratio. From the perspective of the ecological habitat of the bacteria the higher population of peripheral antenna facilitates growth under dim light even though the energy trapping is slower in low light adapted membranes. The similar values for the trapping efficiencies in all samples imply a robust photosynthetic apparatus that functions effectively at a variety of light intensities. |
Databáze: | OpenAIRE |
Externí odkaz: |