Global stability analysis of the Runge-Kutta methods for volterra integral and integro-differential equations with degenerate kernels
Autor: | M. R. Crisci, Antonia Vecchio, E. Russo, Zdzislaw Jackiewicz |
---|---|
Přispěvatelé: | Crisci, M. R., Jackiewicz, Z., Russo, Elvira, Vecchio, A. |
Rok vydání: | 1990 |
Předmět: |
Physics::Computational Physics
Numerical Analysis Collocation Differential equation Degenerate energy levels Mathematical analysis Computer Science::Numerical Analysis Integral equation Volterra integral equation Mathematics::Numerical Analysis Computer Science Applications Theoretical Computer Science Computational Mathematics symbols.namesake Runge–Kutta methods Computational Theory and Mathematics Collocation method symbols Software Numerical stability Mathematics |
Zdroj: | Computing. 45:291-300 |
ISSN: | 1436-5057 0010-485X |
DOI: | 10.1007/bf02238797 |
Popis: | We investigate the stability of the numerical solutions resulting from applying very general classes of Runge-Kutta methods to Volterra integral and integro-differential equations with degenerate kernels. The results are generalizations of previous results obtained by the authors for exact collocation methods for these equations. |
Databáze: | OpenAIRE |
Externí odkaz: |