Inositol pyrophosphates promote the interaction of SPX domains with the coiled-coil motif of PHR transcription factors to regulate plant phosphate homeostasis
Autor: | Ludwig A. Hothorn, Joka Pipercevic, Sebastian Hiller, Rebekka Wild, Robert K. Harmel, Jinsheng Zhu, Michael Hothorn, Dorothea Fiedler, Kristina Sturm, Larissa Broger, Martina Katharina Ried, Luciano A. Abriata |
---|---|
Přispěvatelé: | Structural Plant Biology Laboratory, Department of Botany and Plant Biology, University of Geneva, Institut de biologie structurale (IBS - UMR 5075), Centre National de la Recherche Scientifique (CNRS)-Institut de Recherche Interdisciplinaire de Grenoble (IRIG), Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Direction de Recherche Fondamentale (CEA) (DRF (CEA)), Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Commissariat à l'énergie atomique et aux énergies alternatives (CEA)-Université Grenoble Alpes (UGA), Biozentrum [Basel, Suisse], University of Basel (Unibas), Leibniz Forschungsinstitut für Molekulare Pharmakolgie = Leibniz Institute for Molecular Pharmacology [Berlin, Allemagne] (FMP), Leibniz Association, Ecole Polytechnique Fédérale de Lausanne (EPFL), Leibniz Universität Hannover=Leibniz University Hannover, European Project: 818696,INSPIRE, Leibniz Universität Hannover [Hannover] (LUH) |
Jazyk: | angličtina |
Rok vydání: | 2021 |
Předmět: |
0106 biological sciences
Arabidopsis thaliana receptor Arabidopsis osspx1 dissociation constant Recombinant Proteins/genetics/isolation & purification/metabolism/ultrastructure 01 natural sciences MESH: Recombinant Proteins Diphosphates/metabolism MESH: Amino Acid Motifs plant protein nuclear protein MYB genetics genes comparative study Mutation Crystallography concentration (composition) dimerization quantitative analysis [SDV.BBM.BS]Life Sciences [q-bio]/Biochemistry Molecular Biology/Structural Biology [q-bio.BM] protein domain Eukaryota gene expression regulation MESH: Transcription Factors Inositol Phosphates/metabolism Cell biology isothermal titration calorimetry stoichiometry Diphosphates ddc:580 starvation response 1 SPX1 protein Arabidopsis ddc:500 Starvation response signal transduction Cell signaling in vitro study Science Inositol Phosphates education Plant physiology Article General Biochemistry Genetics and Molecular Biology Protein Binding/genetics 03 medical and health sciences Protein Domains MESH: Protein Binding Arabidopsis/physiology Nuclear Proteins/genetics/metabolism protein structure protein expression inference Arabidopsis protein Arabidopsis Proteins Plant DNA MESH: Inositol Phosphates 030104 developmental biology chemistry inositol pyrophosphate Agrobacterium tumefaciens X-Ray Protein Domains/genetics accumulation brassinosteroid receptor kinase bri1 MESH: Nuclear Proteins Transcription Factors 0301 basic medicine molecular cloning MESH: Signal Transduction Amino Acid Motifs General Physics and Astronomy protein binding seedling medicine.disease_cause Crystallography X-Ray chemistry.chemical_compound inhibitor protein inorganic phosphorus Gene Expression Regulation Plant eukaryote homeostasis Inositol MESH: Arabidopsis Chaetomium thermophilum gene mutation phosphate metabolism transcription factor Dewey Decimal Classification::500 | Naturwissenschaften Coiled coil Multidisciplinary Arabidopsis Proteins/genetics/isolation & purification/metabolism/ultrastructure Nuclear Proteins ultrastructure Recombinant Proteins unclassified drug Transcription Factors/genetics/isolation & purification/metabolism/ultrastructure protein protein interaction MESH: Protein Domains point mutation pyrophosphoric acid derivative Transcription reveals crystal structure MESH: Mutation inositol phosphate gene rearrangement tetramerization binding protein inhibitor protein bki1 MESH: Arabidopsis Proteins spx domain containing protein oligomerization promoter region site directed mutagenesis complex formation expression medicine controlled study DNA binding MESH: Gene Expression Regulation Plant protein motif Transcription factor X-ray crystallography phosphate nuclear magnetic resonance spectroscopy model nonhuman Pi starvation response transcription factor isolation and purification gene interaction starvation General Chemistry X ray crystallography MESH: Crystallography X-Ray PHR1 protein Arabidopsis MESH: Diphosphates brassinosteroid physiology gene expression Signal Transduction/genetics metabolic regulation protein metabolism recombinant protein 010606 plant biology & botany |
Zdroj: | Nature Communications Nature Communications, 2021, 12 (1), pp.384. ⟨10.1038/s41467-020-20681-4⟩ Nature Communications, Vol 12, Iss 1, Pp 1-13 (2021) Nature Communications, Nature Publishing Group, 2021, 12 (1), pp.384. ⟨10.1038/s41467-020-20681-4⟩ Nature Communications 12 (2021), Nr. 1 Nature Communications, Vol. 12, No 384 (2021) |
ISSN: | 2041-1723 |
DOI: | 10.1038/s41467-020-20681-4⟩ |
Popis: | Phosphorus is an essential nutrient taken up by organisms in the form of inorganic phosphate (Pi). Eukaryotes have evolved sophisticated Pi sensing and signaling cascades, enabling them to stably maintain cellular Pi concentrations. Pi homeostasis is regulated by inositol pyrophosphate signaling molecules (PP-InsPs), which are sensed by SPX domain-containing proteins. In plants, PP-InsP-bound SPX receptors inactivate Myb coiled-coil (MYB-CC) Pi starvation response transcription factors (PHRs) by an unknown mechanism. Here we report that a InsP8–SPX complex targets the plant-unique CC domain of PHRs. Crystal structures of the CC domain reveal an unusual four-stranded anti-parallel arrangement. Interface mutations in the CC domain yield monomeric PHR1, which is no longer able to bind DNA with high affinity. Mutation of conserved basic residues located at the surface of the CC domain disrupt interaction with the SPX receptor in vitro and in planta, resulting in constitutive Pi starvation responses. Together, our findings suggest that InsP8 regulates plant Pi homeostasis by controlling the oligomeric state and hence the promoter binding capability of PHRs via their SPX receptors. Plants regulate phosphate homeostasis via the interaction of PHR transcription factors with SPX receptors bound to inositol pyrophosphate signaling molecules. Here the authors show that inositol pyrophosphate-bound SPX interacts with the coiled-coil domain of PHR, which regulates the oligomerization and activity of the transcription factor. |
Databáze: | OpenAIRE |
Externí odkaz: |