Supersymmetric Cluster Expansions and Applications to Random Schrödinger Operators

Autor: Luca Fresta
Přispěvatelé: University of Zurich, Fresta, Luca
Rok vydání: 2021
Předmět:
Zdroj: Mathematical Physics, Analysis and Geometry
ISSN: 1572-9656
1385-0172
DOI: 10.1007/s11040-021-09375-5
Popis: We study discrete random Schrödinger operators via the supersymmetric formalism. We develop a cluster expansion that converges at both strong and weak disorder. We prove the exponential decay of the disorder-averaged Green’s function and the smoothness of the local density of states either at weak disorder and at energies in proximity of the unperturbed spectrum or at strong disorder and at any energy. As an application, we establish Lifshitz-tail-type estimates for the local density of states and thus localization at weak disorder.
Databáze: OpenAIRE