A new mechanism for ozonolysis of unsaturated organics on solids: phosphocholines on NaCl as a model for sea salt particles

Autor: Christopher W. Dilbeck, Barbara J. Finlayson-Pitts, A. Scott Lea, Federico Karagulian
Rok vydání: 2008
Předmět:
Ozone
Time Factors
Infrared Rays
Gentisates
Analytical chemistry
General Physics and Astronomy
Chemical
Sodium Chloride
chemistry [Gentisates]
Mass spectrometry
chemistry [Seawater]
chemistry.chemical_compound
Reaction rate constant
chemistry [Atmosphere]
chemistry [Hydrogen Peroxide]
Criegee intermediate
Models
Spectroscopy
Fourier Transform Infrared

Physical Sciences and Mathematics
Ozonide
Matrix-Assisted Laser Desorption-Ionization
Seawater
Physical and Theoretical Chemistry
Organic Chemicals
chemistry [Phosphatidylcholines]
Spectroscopy
Ozonolysis
Photolysis
Chemical Physics
Chemistry
Spectrometry
Atmosphere
Thermal decomposition
Photodissociation
chemistry [Ozone]
Hydrogen Peroxide
Mass
chemistry [Sodium Chloride]
Kinetics
Models
Chemical

Fourier Transform Infrared
Spectrometry
Mass
Matrix-Assisted Laser Desorption-Ionization

Physical Sciences
Chemical Sciences
Phosphatidylcholines
Volatilization
chemistry [Organic Chemicals]
Zdroj: Physical chemistry chemical physics : PCCP, vol 10, iss 4
Karagulian, F; Scott Lea, A; Dilbeck, CW; & Finlayson-Pitts, BJ. (2008). A new mechanism for ozonolysis of unsaturated organics on solids: Phosphocholines on NaCl as a model for sea salt particles. Physical Chemistry Chemical Physics, 10(4), 528-541. doi: 10.1039/b712715d. UC Irvine: Retrieved from: http://www.escholarship.org/uc/item/63r539sg
DOI: 10.1039/b712715d.
Popis: The ozonolysis of an approximately one monolayer film of 1-oleoyl-2-palmitoyl-sn-glycero-3-phosphocholine (OPPC) on NaCl was followed in real time using diffuse reflection infrared Fourier transform spectrometry (DRIFTS) at 23 degrees C. Matrix-assisted laser desorption/ionization (MALDI) mass spectrometry and Auger electron spectroscopy were used to confirm the identification of the products. Ozone concentrations ranged from 1.7 x 10(12) to 7.0 x 10(13) molecules cm(-3) (70 ppb to 2.8 ppm). Upon exposure to O3, there was a loss of C[double bond, length as m-dash]C accompanied by the formation of a strong band at approximately 1110 cm(-1) due to the formation of a stable secondary ozonide (1,2,4-trioxolane, SOZ). The yield of the SOZ was smaller when the reaction was carried out in the presence of water vapor at concentrations corresponding to relative humidities between 2 and 25%. The dependencies of the rate of SOZ formation on the concentrations of ozone and water vapor are consistent with the initial formation of a primary ozonide (1,2,3-trioxolane, POZ) that can react with O3 or H2O in competition with its thermal decomposition to a Criegee intermediate and aldehyde. Estimates were obtained for the rate constants for the POZ thermal decomposition and for its reactions with O3 and H2O, as well as for the initial reaction of O3 with OPPC. The SOZ decomposed upon photolysis in the actinic region generating aldehydes, carboxylic acids and anhydrides. These studies show that the primary ozonide has a sufficiently long lifetime when formed on a solid substrate that direct reactions with O3 and H2O can compete with its thermal decomposition. In dry polluted atmospheres, ozone-alkene reactions may lead in part to the formation of stable secondary ozonides whose chemistry, photochemistry and toxicity should be taken into account in models of such regions.
Databáze: OpenAIRE