User Trace-Based Recommendation System for a Digital Archive
Autor: | Elöd Egyed-Zsigmond, Reim Doumat, Jean-Marie Pinon |
---|---|
Přispěvatelé: | Distribution, Recherche d'Information et Mobilité (DRIM), Laboratoire d'InfoRmatique en Image et Systèmes d'information (LIRIS), Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Institut National des Sciences Appliquées (INSA)-Université de Lyon-Institut National des Sciences Appliquées (INSA)-Centre National de la Recherche Scientifique (CNRS)-Université Claude Bernard Lyon 1 (UCBL), Université de Lyon-École Centrale de Lyon (ECL), Université de Lyon-Université Lumière - Lyon 2 (UL2)-Institut National des Sciences Appliquées de Lyon (INSA Lyon), Université de Lyon-Université Lumière - Lyon 2 (UL2), Isabelle Bichindaritz, Stefania Montani |
Jazyk: | angličtina |
Rok vydání: | 2010 |
Předmět: |
Information retrieval
Computer science business.industry Process (engineering) 02 engineering and technology Reuse Recommender system Cultural heritage World Wide Web Metadata Annotation 020204 information systems 0202 electrical engineering electronic engineering information engineering 020201 artificial intelligence & image processing The Internet [INFO]Computer Science [cs] business TRACE (psycholinguistics) |
Zdroj: | ICCBR 2010 ICCBR 2010, Jul 2010, Alexandria, Italie, Italy. pp.360-374, ⟨10.1007/978-3-642-14274-1_27⟩ Case-Based Reasoning. Research and Development ISBN: 9783642142734 ICCBR |
DOI: | 10.1007/978-3-642-14274-1_27⟩ |
Popis: | International audience; Precious collections of cultural heritage documents are available for study on the internet via web archives. The automatically added metadata on these scanned documents are not sufficient to make a specific search. User effort is needed to add manual annotations in order to enhance document content accessibility and exploitability. Annotators have different experiences in dissimilar document domains. Hence the reuse of users’ experiences is constructive to accelerate the annotation process and to correct user mistakes. In this article we present our digital archive model and a prototype to collaboratively annotate online ancient manuscripts. Our system tracks important user actions and saves them as traces composed of hierarchical episodes. These episodes are considered as cases to be reused by a recommender system. |
Databáze: | OpenAIRE |
Externí odkaz: |