Taylor coefficients of the Jacobi θ3(q) function

Autor: Christophe Vignat, Tanay Wakhare
Přispěvatelé: Department of Mathematics, University of Maryland, Laboratoire des signaux et systèmes (L2S), Université Paris-Sud - Paris 11 (UP11)-CentraleSupélec-Centre National de la Recherche Scientifique (CNRS)
Rok vydání: 2020
Předmět:
Zdroj: Journal of Number Theory
Journal of Number Theory, Elsevier, 2020, 216, pp.280-306. ⟨10.1016/j.jnt.2020.03.002⟩
ISSN: 0022-314X
1096-1658
DOI: 10.1016/j.jnt.2020.03.002
Popis: We extend some results recently obtained by Dan Romik [14] about the Taylor coefficients of the theta function θ 3 ( e − π ) to the case θ 3 ( q ) of a real valued variable 0 q 1 . These results are obtained by carefully studying the properties of the cumulants associated to a Jacobi θ 3 (or discrete normal) distributed random variable. This article also states some integrality conjectures about rational sequences that generalize the one studied by Romik.
Databáze: OpenAIRE