Indoor Localization Method Based on Regional Division with IFCM
Autor: | Huaijun Wang, Zhiyong Hu, Ting Cao, Junhuai Li, Lei Yu, Xixi Gao |
---|---|
Rok vydání: | 2019 |
Předmět: |
Computer Networks and Communications
Computer science lcsh:TK7800-8360 02 engineering and technology Fuzzy logic k-nearest neighbors algorithm 0203 mechanical engineering regional division 0202 electrical engineering electronic engineering information engineering AP optimization Electrical and Electronic Engineering fingerprint localization Selection (genetic algorithm) IFCM business.industry lcsh:Electronics Fingerprint (computing) 020206 networking & telecommunications 020302 automobile design & engineering Pattern recognition Division (mathematics) Hierarchical clustering Hardware and Architecture Control and Systems Engineering Signal Processing Artificial intelligence business |
Zdroj: | Electronics Volume 8 Issue 5 Electronics, Vol 8, Iss 5, p 559 (2019) |
ISSN: | 2079-9292 |
DOI: | 10.3390/electronics8050559 |
Popis: | With the development of wireless technology, indoor localization has gained wide attention. The fingerprint localization method is proposed in this paper, which is divided into two phases: offline training and online positioning. In offline training phase, the Improved Fuzzy C-means (IFCM) algorithm is proposed for regional division. The Between-Within Proportion (BWP) index is selected to divide fingerprint database, which can ensure the result of regional division consistent with the building plane structure. Moreover, the Agglomerative Nesting (AGNES) algorithm is applied to accomplish Access Point (AP) optimization. In the online positioning phase, sub-region selection is performed by nearest neighbor algorithm, then the Weighted K-nearest Neighbor (WKNN) algorithm based on Pearson Correlation Coefficient (PCC) is utilized to locate the target point. After the evaluation on the effect of regional division and AP optimization of location precision and time, the experiments show that the average positioning error is 2.53 m and the average computation time of the localization algorithm based on PCC reduced by 94.13%. |
Databáze: | OpenAIRE |
Externí odkaz: |