Hydroxyl Radicals in E-Cigarette Vapor and E-Vapor Oxidative Potentials under Different Vaping Patterns
Autor: | Vera Samburova, Jeffrey D. Laskin, Gediminas Mainelis, Olivia A. Wackowski, Yeongkwon Son, Vladimir Mishin, Qingyu Meng, Cristine D. Delnevo, Andrey Khlystov, Stephan Schwander |
---|---|
Rok vydání: | 2019 |
Předmět: |
Radical
Oxidative phosphorylation Electronic Nicotine Delivery Systems 010501 environmental sciences Ligands Toxicology medicine.disease_cause Photochemistry 01 natural sciences Article 03 medical and health sciences chemistry.chemical_compound medicine Humans 030304 developmental biology 0105 earth and related environmental sciences chemistry.chemical_classification 0303 health sciences Reactive oxygen species Hydroxyl Radical Vaping Epithelial lining fluid food and beverages General Medicine Ascorbic acid Flavoring Agents Solvent chemistry E-Cigarette Vapor Hydroxyl radical Oxidation-Reduction Oxidative stress |
Zdroj: | Chem Res Toxicol |
ISSN: | 1520-5010 0893-228X |
DOI: | 10.1021/acs.chemrestox.8b00400 |
Popis: | Available studies, while limited in number, suggest that e-cigarette vaping induces oxidative stress, with one potential mechanism being the direct formation of reactive oxygen species (ROS) in e-vapor. In the present studies, we measured the formation of hydroxyl radical ((•)OH), the most destructive ROS, in e-vapor under a range of vaping patterns (i.e., power settings, solvent concentrations, flavorings). Study results show that increased power output and puff volume correspond with the formation of significantly higher amounts of (•)OH in e-vapor because of elevated coil temperature and oxygen supply. Vegetable glycerin (VG) e-liquids generated higher (•)OH levels than propylene glycol (PG) e-liquids, as did flavored e-liquids relative to nonflavored e-liquids. E-vapor in combination with ascorbic acid, which is an abundant biological molecule in human epithelial lining fluid, can also induce (•)OH formation. The dose of radical per puff associated with e-cigarette vaping was 10–1000 times lower than the reported dose generated by cigarette smoking. However, the daily average (•)OH dose can be comparable to that from cigarette smoking depending on vaping patterns. Overall, e-cigarette users who use VG-based flavored e-cigarettes at higher power output settings may be at increased risk for (•)OH exposures and related health consequences such as asthma and chronic obstructive pulmonary disease. |
Databáze: | OpenAIRE |
Externí odkaz: |